2次式の実数の範囲で因数分解
2次式の実数の範囲で因数分解
全て実数の範囲で考える。
全て実数の範囲で考える。
(1)
\[ a^{2}-b^{2}=\left(a+b\right)\left(a-b\right) \](2)
\[ a^{2}\pm2ab+b^{2}=\left(a\pm b\right)^{2} \](3)
\[ a^{2}+b^{2}+c^{2}+2\left(ab+bc+ca\right)=\left(a+b+c\right)^{2} \](4)
\[ \sum_{j=1}^{n}\sum_{k=1}^{n}\left(a_{j}a_{k}\right)=\left(\sum_{k=1}^{n}a_{k}\right)^{2} \](1)
\begin{align*} a^{2}-b^{2} & =a^{2}-ab+ab-b^{2}\\ & =a\left(a-b\right)+b\left(a-b\right)\\ & =\left(a+b\right)\left(a-b\right) \end{align*}(2)
\begin{align*} a^{2}\pm2ab+b^{2} & =a^{2}+b^{2}\pm2ab\\ & =\left(a\pm b\right)^{2}\mp2ab\pm2ab\\ & =\left(a\pm b\right)^{2} \end{align*}(3)
\begin{align*} a^{2}+b^{2}+c^{2}+2\left(ab+bc+ca\right) & =a^{2}+2\left(b+c\right)a+b^{2}+c^{2}+2bc\\ & =a^{2}+2\left(b+c\right)a+\left(b+c\right)^{2}\\ & =\left(a+b+c\right)^{2} \end{align*}(3)-2
(4)で\(n=3\)のときである。(4)
\begin{align*} \sum_{j=1}^{n}\sum_{k=1}^{n}\left(a_{j}a_{k}\right) & =\left(\sum_{j=1}^{n}a_{j}\right)\left(\sum_{k=1}^{n}a_{k}\right)\\ & =\left(\sum_{k=1}^{n}a_{k}\right)^{2} \end{align*}ページ情報
タイトル | 2次式の実数の範囲で因数分解 |
URL | https://www.nomuramath.com/getq88d1/ |
SNSボタン |
相反方程式の定義と解法
\[
\sum_{k=0}^{n}a_{k}x^{k}=0
\]
3次式の実数の範囲で因数分解
\[
a^{3}\pm b^{3}=\left(a\pm b\right)\left(a^{2}\mp ab+b^{2}\right)
\]
n乗根の因数分解
\[
z^{n}-1=\prod_{k=1}^{n}\left(z-e^{\frac{2\pi}{n}ki}\right)
\]
ビネ・コーシーとラグランジュの恒等式
\[
\left(\sum_{i=1}^{n}a_{i}c_{i}\right)\left(\sum_{j=1}^{n}b_{j}d_{j}\right)-\left(\sum_{i=1}^{n}a_{i}d_{i}\right)\left(\sum_{j=1}^{n}b_{j}c_{j}\right)=\sum_{1\leq i<j\leq n}\left(a_{i}b_{j}-a_{j}b_{i}\right)\left(c_{i}d_{j}-c_{j}d_{i}\right)
\]