すべての自然数の積(解析接続あり)
すべての自然数の積(解析接続あり)
\[ \prod_{k=1}^{\infty}k=\sqrt{2\pi} \]
\[ \prod_{k=1}^{\infty}k=\sqrt{2\pi} \]
\begin{align*}
\prod_{k=1}^{\infty}k & =\prod_{k=1}^{\infty}e^{\Log k}\\
& =\exp\left(\sum_{k=1}^{\infty}\Log k\right)\\
& =\exp\left(-\left[\sum_{k=1}^{\infty}-k^{-s}\Log k\right]_{s=0}\right)\\
& =\exp\left(-\left[\frac{d}{ds}\sum_{k=1}^{\infty}k^{-s}\right]_{s=0}\right)\\
& =\exp\left(-\left[\frac{d}{ds}\zeta\left(s\right)\right]_{s=0}\right)\\
& =\exp\left(-\zeta'\left(0\right)\right)\\
& =\exp\left(\Log\sqrt{2\pi}\right)\\
& =\sqrt{2\pi}
\end{align*}
ページ情報
タイトル | すべての自然数の積(解析接続あり) |
URL | https://www.nomuramath.com/gz540qzl/ |
SNSボタン |
リーマン・ゼータ関数を含む総和
\[
\sum_{k=2}^{\infty}\frac{\zeta\left(k\right)-1}{k}=1-\gamma
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の非正整数値
\[
\zeta\left(-n,\alpha\right)=-\frac{1}{n+1}B_{n+1}\left(\alpha\right)
\]
完備リーマンゼータ関数の関数等式
\[
\xi(s)=\xi(1-s)
\]
ゼータ関数の交代級数
\[
\sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2}
\]