三角関数を正接の半角、双曲線関数を双曲線正接の半角で表す。

三角関数を正接の半角で表す

(1)

\[ \tan z=\frac{2\tan\frac{z}{2}}{1-\tan^{2}\frac{z}{2}} \]

(2)

\[ \sin z=\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \]

(3)

\[ \cos z=\frac{1-\tan^{2}\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \]

(1)

\begin{align*} \tan z & =\tan\left(\frac{z}{2}+\frac{z}{2}\right)\\ & =\frac{\tan\frac{z}{2}+\tan\frac{z}{2}}{1-\tan\frac{z}{2}\tan\frac{z}{2}}\\ & =\frac{2\tan\frac{z}{2}}{1-\tan^{2}\frac{z}{2}} \end{align*}

(2)

\begin{align*} \sin z & =\sin\left(\frac{z}{2}+\frac{z}{2}\right)\\ & =2\sin\frac{z}{2}\cos\frac{z}{2}\\ & =2\tan\frac{z}{2}\cos^{2}\frac{z}{2}\\ & =\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \end{align*}

(3)

\begin{align*} \cos z & =\cos\left(\frac{z}{2}+\frac{z}{2}\right)\\ & =\cos^{2}\frac{z}{2}-\sin^{2}\frac{z}{2}\\ & =\left(1-\tan^{2}\frac{z}{2}\right)\cos^{2}\frac{z}{2}\\ & =\frac{1-\tan^{2}\frac{z}{2}}{1+\tan^{2}\frac{z}{2}} \end{align*}
双曲線関数を双曲線正接の半角で表す

(1)

\[ \tanh z=\frac{2\tanh\frac{z}{2}}{1+\tanh^{2}\frac{z}{2}} \]

(2)

\[ \sinh z=\frac{2\tanh\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \]

(3)

\[ \cosh z=\frac{1+\tanh^{2}\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \]

(1)

\begin{align*} \tanh z & =-i\tan\left(iz\right)\\ & =-i\frac{2\tan\frac{iz}{2}}{1-\tan^{2}\frac{iz}{2}}\\ & =\frac{2\tanh\frac{z}{2}}{1+\tanh^{2}\frac{z}{2}} \end{align*}

(2)

\begin{align*} \sinh z & =-i\sin\left(iz\right)\\ & =-i\frac{2\tan\frac{iz}{2}}{1+\tan^{2}\frac{iz}{2}}\\ & =\frac{2\tanh\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \end{align*}

(3)

\begin{align*} \cosh z & =\cos\left(iz\right)\\ & =\frac{1-\tan^{2}\frac{iz}{2}}{1+\tan^{2}\frac{iz}{2}}\\ & =\frac{1+\tanh^{2}\frac{z}{2}}{1-\tanh^{2}\frac{z}{2}} \end{align*}

ページ情報
タイトル
三角関数を正接の半角、双曲線関数を双曲線正接の半角で表す。
URL
https://www.nomuramath.com/hi9nbkia/
SNSボタン