整列集合の順序同型は一意的
整列集合の順序同型は一意的
整列集合\(\left(X,\preceq_{X}\right),\left(Y,\preceq_{Y}\right)\)が順序同型\(\left(X,\preceq_{X}\right)\simeq\left(Y,\preceq_{Y}\right)\)のとき、順序同型写像\(f:X\rightarrow Y\)は一意的に決まる。
また順序同型写像\(g:X\rightarrow X\)は恒等写像のみである。
整列集合\(\left(X,\preceq_{X}\right),\left(Y,\preceq_{Y}\right)\)が順序同型\(\left(X,\preceq_{X}\right)\simeq\left(Y,\preceq_{Y}\right)\)のとき、順序同型写像\(f:X\rightarrow Y\)は一意的に決まる。
また順序同型写像\(g:X\rightarrow X\)は恒等写像のみである。
順序同型写像が2つ\(f:X\rightarrow Y,h:X\rightarrow Y\)あるとする。
このとき、\(h^{\bullet}\circ f\)は\(X\)から\(X\)への順序同型写像となり、任意の\(x\in X\)に対し、\(x\preceq_{X}h^{\bullet}\left(f\left(x\right)\right)\)となるので\(h\left(x\right)\preceq_{Y}f\left(x\right)\)となる。
また、このとき\(f^{\bullet}\circ h\)は\(X\)から\(X\)への順序同型写像なので\(f\left(x\right)\preceq_{Y}h\left(x\right)\)となる。
これより、任意の\(x\in X\)に対し\(h\left(x\right)\preceq_{Y}f\left(x\right)\land f\left(x\right)\preceq_{Y}h\left(x\right)\)なので\(f\left(x\right)=h\left(x\right)\)となる。
故に題意は成り立つ。
また明らかに恒等写像なら順序同型写像となりそれは一意的に決まるので、順序同型写像は恒等写像のみになる。
このとき、\(h^{\bullet}\circ f\)は\(X\)から\(X\)への順序同型写像となり、任意の\(x\in X\)に対し、\(x\preceq_{X}h^{\bullet}\left(f\left(x\right)\right)\)となるので\(h\left(x\right)\preceq_{Y}f\left(x\right)\)となる。
また、このとき\(f^{\bullet}\circ h\)は\(X\)から\(X\)への順序同型写像なので\(f\left(x\right)\preceq_{Y}h\left(x\right)\)となる。
これより、任意の\(x\in X\)に対し\(h\left(x\right)\preceq_{Y}f\left(x\right)\land f\left(x\right)\preceq_{Y}h\left(x\right)\)なので\(f\left(x\right)=h\left(x\right)\)となる。
故に題意は成り立つ。
-
順序同型写像\(g:X\rightarrow X\)は\(\left(X,\preceq_{X}\right)\simeq\left(X,\preceq_{X}\right)\)なので自分自身と順序同型となる。また明らかに恒等写像なら順序同型写像となりそれは一意的に決まるので、順序同型写像は恒等写像のみになる。
ページ情報
タイトル | 整列集合の順序同型は一意的 |
URL | https://www.nomuramath.com/hlhh2wle/ |
SNSボタン |
切片の定義
\[
X\left\langle a\right\rangle =\left\{ x\in X;x\prec a\right\}
\]
順序同型は同値関係
順序同型は同値関係(反射律・対称律・推移律)を満たす。
上界(下界)・上限(下限)・最大元(最小元)・極大元(極小元)の定義
\[
\min U=\sup A
\]
半順序集合と狭義半順序集合の関係