偶数と奇数の2重階乗
\(n\in\mathbb{N}_{0}\)とする。
(1)
\[ \left(2n\right)!!=2^{n}n! \](2)
\[ \left(2n+1\right)!!=2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)} \](1)
\begin{align*} \left(2n\right)!! & =\prod_{k=1}^{n}2k\\ & =2^{n}\prod_{k=1}^{n}k\\ & =2^{n}n! \end{align*}(2)
\begin{align*} \left(2n+1\right)!! & =\prod_{k=1}^{n}\left(2k+1\right)\\ & =2^{n}\prod_{k=1}^{n}\left(k+\frac{1}{2}\right)\\ & =2^{n}\prod_{k=1}^{n}\frac{\left(k+\frac{1}{2}\right)!}{\left(k-\frac{1}{2}\right)!}\\ & =2^{n}\frac{\left(n+\frac{1}{2}\right)!}{\left(\frac{1}{2}\right)!}\\ & =2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)} \end{align*}ページ情報
タイトル | 偶数と奇数の2重階乗 |
URL | https://www.nomuramath.com/i5egz33z/ |
SNSボタン |
階乗と階乗の逆数の母関数
\[
\frac{x^{a}}{a!}=e^{x}\left(\frac{\Gamma\left(a+1,x\right)}{\Gamma\left(a+1\right)}-\frac{\Gamma\left(a,x\right)}{\Gamma\left(a\right)}\right)
\]
ガンマ関数の極限問題
\[
\lim_{x\rightarrow0}\frac{\Gamma(ax)}{\Gamma(x)}=\frac{1}{a}
\]
ポリガンマ関数同士の差の極限
\[
\lim_{z\rightarrow0}\left(\psi^{\left(n\right)}\left(z-m\right)-\psi^{\left(n\right)}\left(z\right)\right)=n!H_{m,n+1}
\]
ディガンマ関数・ポリガンマ関数の漸化式・正整数値・半正整数値
\[
\psi(z+1)=\psi(z)+\frac{1}{z}
\]