微分・原始関数・定積分・不定積分の定義
微分・原始関数・定積分・不定積分の定義
(1)微分の定義
\[ \frac{df(x)}{dx}=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \](2)原始関数
微分すると\(f\left(x\right)\)となる関数を原始関数といい、\(\int f\left(x\right)dx\)と表す。すなわち\(f\left(x\right)\)の原始関数は逆微分をしたものである。(3)定積分
閉区間\(I\)で可積分関数\(f\left(x\right)\)があるとする。このとき\(y=f\left(x\right),y=0,x=a,x=b\)で囲まれた部分の面積を\(\int_{a}^{b}f\left(x\right)dx\)で表し、これを定積分という。(4)不定積分
閉区間\(I\)で可積分関数\(f\left(x\right)\)があるとする。このとき\(I\)内の定数\(a\)から変数\(x\)までの定積分\(\int_{a}^{x}f\left(x\right)dx\)を\(f\left(x\right)\)の不定積分という。ページ情報
タイトル | 微分・原始関数・定積分・不定積分の定義 |
URL | https://www.nomuramath.com/ibdk51vm/ |
SNSボタン |
微分と積分の関係
\[
f\left(x\right)=\int_{f^{\bullet}\left(a\right)}^{x}f'\left(x\right)dx-a
\]
対数を含む積分
\[
\int\log\left(x\right)f\left(x\right)dx=\left[\frac{d}{dt}\int x^{t}f\left(x\right)dx\right]_{t=0}
\]
微分の基本公式
\[
\left(f(x)g(x)\right)'=f'(x)g(x)+f(x)g'(x)
\]
ライプニッツの法則
\[
\left(fg\right)^{(n)}=\sum_{k=0}^{n}C(n,k)f^{(k)}g^{(n-k)}
\]