スターリング数と上昇・下降階乗
スターリング数と上昇・下降階乗
\(S_{2}\left(n,k\right)\)は第2種スターリング数
(1)第1種スターリング数と上昇階乗
\[ Q\left(x,n\right)=\sum_{k=0}^{n}\left(-1\right)^{n+k}S_{1}\left(n,k\right)x^{k} \](2)第2種スターリング数と上昇階乗
\[ x^{n}=\sum_{k=0}^{n}\left(-1\right)^{k+n}S_{2}\left(n,k\right)Q\left(x,k\right) \]-
\(S_{1}\left(n,k\right)\)は第1種スターリング数\(S_{2}\left(n,k\right)\)は第2種スターリング数
(1)
\begin{align*} Q\left(3,2\right) & =\sum_{k=0}^{2}\left(-1\right)^{2+k}S_{1}\left(2,k\right)3^{k}\\ & =\left(-1\right)^{2}S_{1}\left(2,0\right)3^{0}+\left(-1\right)^{3}S_{1}\left(2,1\right)3^{1}+\left(-1\right)^{4}S_{1}\left(2,2\right)3^{2}\\ & =0+3+9\\ & =12 \end{align*}(2)
\begin{align*} 3^{2} & =\sum_{k=0}^{2}\left(-1\right)^{k+2}S_{2}\left(2,k\right)Q\left(3,k\right)\\ & =\left(-1\right)^{2}S_{2}\left(2,0\right)Q\left(3,0\right)+\left(-1\right)^{3}S_{2}\left(2,1\right)Q\left(3,1\right)+\left(-1\right)^{4}S_{2}\left(2,2\right)Q\left(3,2\right)\\ & =0-3+12\\ & =9 \end{align*}(1)
\begin{align*} Q\left(x,n\right) & =\left(-1\right)^{n}P\left(-x,n\right)\\ & =\left(-1\right)^{n}\sum_{k=0}^{n}S_{1}\left(n,k\right)\left(-x\right)^{k}\\ & =\sum_{k=0}^{n}\left(-1\right)^{n+k}S_{1}\left(n,k\right)x^{k} \end{align*}(2)
\begin{align*} x^{n} & =\left(-1\right)^{n}\left(-x\right)^{n}\\ & =\left(-1\right)^{n}\sum_{k=0}^{n}S_{2}\left(n,k\right)P\left(-x,k\right)\\ & =\sum_{k=0}^{n}\left(-1\right)^{k+n}S_{2}\left(n,k\right)Q\left(x,k\right) \end{align*}ページ情報
タイトル | スターリング数と上昇・下降階乗 |
URL | https://www.nomuramath.com/ibjlfac0/ |
SNSボタン |
スターリング数とベルヌーイ数の関係
\[
\frac{\left(-1\right)^{m}}{m!}\sum_{k=0}^{m}\left(-1\right)^{k}S_{1}\left(m+1,k+1\right)B_{k}=\frac{1}{m+1}
\]
スターリング数の組み合わせ解釈
スターリング数の母関数
\[
\sum_{n=0}^{\infty}S_{1}\left(n,k\right)\frac{x^{n}}{n!}=\frac{\log^{k}\left(1+x\right)}{k!}
\]
第2種スターリング数の一般解
\[
S_{2}\left(n,k\right)=\frac{1}{k!}\sum_{j=0}^{k}\left(-1\right)^{k-j}C\left(k,j\right)j^{n}
\]