(*)分母に1乗と2乗ルートの積分
分母に1乗と2乗ルートの積分
\[ \int\frac{1}{\left(z+\alpha\right)\sqrt{z^{2}+\beta}}dz=\frac{\tanh^{\bullet}\left(\frac{\alpha z-\beta}{\sqrt{\alpha^{2}+\beta}\sqrt{\beta+z^{2}}}\right)}{\sqrt{\alpha^{2}+\beta}} \]
\[ \int\frac{1}{\left(z+\alpha\right)\sqrt{z^{2}+\beta}}dz=\frac{\tanh^{\bullet}\left(\frac{\alpha z-\beta}{\sqrt{\alpha^{2}+\beta}\sqrt{\beta+z^{2}}}\right)}{\sqrt{\alpha^{2}+\beta}} \]
略
ページ情報
タイトル | (*)分母に1乗と2乗ルートの積分 |
URL | https://www.nomuramath.com/ig89gztf/ |
SNSボタン |
3角関数と3角関数の対数の積分
\[
\int\sin\left(z\right)\log\left(\sin z\right)dz=-\cos z\log\sin z+\cos z+\log\left(\sin\frac{z}{2}\right)-\log\left(\cos\frac{z}{2}\right)+C
\]
分母分子にべき乗があり分母には定数が足されている定積分
\[
\int_{0}^{\infty}\frac{x^{a}}{c+x^{b}}dx=\frac{c^{\frac{a+1}{b}-1}}{b}\pi\sin^{-1}\left(\frac{a+1}{b}\pi\right)
\]
分母に2乗のルートがある積分
\[
\int\frac{1}{\sqrt{z^{2}+\alpha}}dz=\frac{\sqrt{\alpha}\sqrt{\frac{z^{2}}{\alpha}+1}}{\sqrt{z^{2}+\alpha}}\sinh^{\bullet}\frac{z}{\sqrt{\alpha}}+C
\]