(*)チェビシェフ多項式のロドリゲス公式
チェビシェフ多項式のロドリゲス公式
(1)
\[ T_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}\sqrt{1-x^{2}}}{2^{n}\Gamma\left(n+\frac{1}{2}\right)}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n-\frac{1}{2}} \](2)
\[ U_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}(n+1)}{2^{n+1}\Gamma\left(n+\frac{3}{2}\right)\sqrt{1-x^{2}}}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n+\frac{1}{2}} \]略
ページ情報
タイトル | (*)チェビシェフ多項式のロドリゲス公式 |
URL | https://www.nomuramath.com/igvbpmrb/ |
SNSボタン |
チェビシェフ多項式の別表記
\[
T_{n}(x)=\frac{1}{2}\left(\left(x+i\sqrt{1-x^{2}}\right)^{n}+\left(x-i\sqrt{1-x^{2}}\right)^{n}\right)
\]
第1種・第2種チェビシェフ多項式の定義
\[
T_{n}(\cos t)=\cos(nt)
\]
チェビシェフ多項式の直交性
\[
\int_{-1}^{1}T_{m}(x)T_{n}(x)\frac{dx}{\sqrt{1-x^{2}}}=\frac{\pi}{2}\left(\delta_{mn}+\delta_{0m}\delta_{0n}\right)
\]
第2種チェビシェフ多項式の因数分解
\[
U_{2n-1}(x)=2U_{n-1}(x)T_{n}(x)
\]