2項係数の総和
2項係数の総和
2項係数の総和について次が成り立つ。
\(n\in\mathbb{N}_{0},m\in\mathbb{N}\)とする。
\[ \sum_{j=k}^{n}C\left(j,k\right)=C\left(n+1,k+1\right) \]
2項係数の総和について次が成り立つ。
\(n\in\mathbb{N}_{0},m\in\mathbb{N}\)とする。
(1)
\[ \sum_{k=0}^{n}C\left(n,k\right)=2^{n} \](2)
\[ \sum_{k=0}^{n}P\left(k,m\right)C\left(n,k\right)=P\left(n,m\right)2^{n-m} \](3)
\[ \sum_{k=0}^{n}k^{m}C\left(n,k\right)=n\sum_{k=0}^{n-1}\left(k+1\right)^{m-1}C\left(n-1,k\right) \](4)
\[ \sum_{k=0}^{n}k^{m}C\left(n,k\right)=\sum_{j=0}^{m}S_{2}\left(m,j\right)P\left(n,j\right)2^{n-j} \](5)
\[ \sum_{k=0}^{n}kC\left(n,k\right)=n2^{n-1} \](6)
\[ \sum_{k=0}^{n}k^{2}C\left(n,k\right)=\left(n^{2}+n\right)2^{n-2} \](7)
\(k\in\mathbb{N}_{0}\)とする。\[ \sum_{j=k}^{n}C\left(j,k\right)=C\left(n+1,k+1\right) \]
(1)
\begin{align*} \sum_{k=0}^{n}C\left(n,k\right) & =\sum_{k=0}^{n}C\left(n,k\right)1^{k}1^{n-k}\\ & =\left(1+1\right)^{n}\\ & =2^{n} \end{align*}(2)
\begin{align*} \sum_{k=0}^{n}P\left(k,m\right)C\left(n,k\right) & =\sum_{k=0}^{n}\frac{n!}{\left(k-m\right)!\left(n-k\right)!}\\ & =\frac{n!}{\left(n-m\right)!}\sum_{k=0}^{n}\frac{\left(n-m\right)!}{\left(k-m\right)!\left(n-k\right)!}\\ & =P\left(n,m\right)\sum_{k=0}^{n}C\left(n-m,n-k\right)\\ & =P\left(n,m\right)\sum_{k=0}^{n-m}C\left(n-m,k\right)\\ & =P\left(n,m\right)2^{n-m} \end{align*}(3)
\begin{align*} \sum_{k=0}^{n}k^{m}C\left(n,k\right) & =n\sum_{k=0}^{n}k^{m-1}C\left(n-1,k-1\right)\\ & =n\sum_{k=0}^{n-1}\left(k+1\right)^{m-1}C\left(n-1,k\right) \end{align*}(4)
\begin{align*} \sum_{k=0}^{n}k^{m}C\left(n,k\right) & =\sum_{k=0}^{n}\sum_{j=0}^{m}S_{2}\left(m,j\right)P\left(k,j\right)C\left(n,k\right)\\ & =\sum_{j=0}^{m}S_{2}\left(m,j\right)P\left(n,j\right)2^{n-j} \end{align*}(5)
\begin{align*} \sum_{k=0}^{n}kC\left(n,k\right) & =\sum_{j=0}^{1}S_{2}\left(1,j\right)P\left(n,j\right)2^{n-j}\\ & =S_{2}\left(1,0\right)P\left(n,0\right)2^{n-0}+S_{2}\left(1,1\right)P\left(n,1\right)2^{n-1}\\ & =n2^{n-1} \end{align*}(5)-2
\begin{align*} \sum_{k=0}^{n}kC\left(n,k\right) & =\sum_{k=0}^{n}nC\left(n-1,k-1\right)\\ & =n\sum_{k=1}^{n}C\left(n-1,k-1\right)\\ & =n\sum_{k=0}^{n-1}C\left(n-1,k\right)\\ & =n2^{n-1} \end{align*}(5)-3
\begin{align*} \sum_{k=0}^{n}kC\left(n,k\right) & =\left[\frac{d}{dx}\sum_{k=0}^{n}C\left(n,k\right)x^{k}\right]_{x=1}\\ & =\left[\frac{d}{dx}\left(1+x\right)^{n}\right]_{x=1}\\ & =\left[n\left(1+x\right)^{n-1}\right]_{x=1}\\ & =n2^{n-1} \end{align*}(6)
\begin{align*} \sum_{k=0}^{n}k^{2}C\left(n,k\right) & =\sum_{j=0}^{2}S_{2}\left(2,j\right)P\left(n,j\right)2^{n-j}\\ & =S_{2}\left(2,0\right)P\left(n,0\right)2^{n-0}+S_{2}\left(2,1\right)P\left(n,1\right)2^{n-1}+S_{2}\left(2,2\right)P\left(n,2\right)2^{n-2}\\ & =n2^{n-1}+n\left(n-1\right)2^{n-2}\\ & =\left(n^{2}+n\right)2^{n-2} \end{align*}(6)-2
\begin{align*} \sum_{k=0}^{n}k^{2}C\left(n,k\right) & =\sum_{k=0}^{n}\left\{ k\left(k-1\right)C\left(n,k\right)+kC\left(n,k\right)\right\} \\ & =\sum_{k=0}^{n}\left\{ n\left(n-1\right)C\left(n-2,k-2\right)+nC\left(n-1,k-1\right)\right\} \\ & =n\left(n-1\right)\sum_{k=2}^{n}C\left(n-2,k-2\right)+n\sum_{k=1}^{n}C\left(n-1,k-1\right)\\ & =n\left(n-1\right)\sum_{k=0}^{n-2}C\left(n-2,k-2\right)+n\sum_{k=0}^{n-1}C\left(n-1,k-1\right)\\ & =n\left(n-1\right)2^{n-2}+n2^{n-1}\\ & =\left(n^{2}+n\right)2^{n-2} \end{align*}(6)-3
\begin{align*} \sum_{k=0}^{n}k^{2}C\left(n,k\right) & =\left[\frac{d}{dx}x\frac{d}{dx}\sum_{k=0}^{n}C\left(n,k\right)x^{k}\right]_{x=1}\\ & =\left[\frac{d}{dx}x\frac{d}{dx}\left(1+x\right)^{n}\right]_{x=1}\\ & =n\left[\frac{d}{dx}x\left(1+x\right)^{n-1}\right]_{x=1}\\ & =n\left[\frac{d}{dx}\left\{ \left(1+x\right)^{n}-\left(1+x\right)^{n-1}\right\} \right]_{x=1}\\ & =n\left[n\left(1+x\right)^{n-1}-\left(n-1\right)\left(1+x\right)^{n-2}\right]_{x=1}\\ & =n\left\{ n2^{n-1}-\left(n-1\right)2^{n-2}\right\} \\ & =\left(n^{2}+n\right)2^{n-2} \end{align*}(7)
\begin{align*} \sum_{j=k}^{n}C\left(j,k\right) & =\sum_{j=k}^{n}\left(C\left(j+1,k+1\right)-C\left(j,k+1\right)\right)\cmt{\because\text{パスカルの法則}}\\ & =C\left(n+1,k+1\right)-C\left(k,k+1\right)\\ & =C\left(n+1,k+1\right) \end{align*}ページ情報
タイトル | 2項係数の総和 |
URL | https://www.nomuramath.com/io7dswnn/ |
SNSボタン |
2項係数の1項間漸化式
\[
C(x+1,y)=\frac{x+1}{x+1-y}C(x,y)
\]
2項係数の飛び飛びの総和
\[
\sum_{k=-\infty}^{\infty}C\left(mn,mk+l\right)=\frac{1}{m}\sum_{j=0}^{m-1}\left(1+\omega_{m}^{j}\right)^{mn}\left(\omega_{m}^{j}\right)^{-l}
\]
2項係数の逆数の差分
\[
C^{-1}(k+j+1,j+1)=\frac{j+1}{j}\left(C^{-1}(k+j,j)-C^{-1}(k+j+1,j)\right)
\]
2項係数を含む総和
\[
\sum_{k=0}^{n}\frac{\left(-1\right)^{k}C\left(n,k\right)}{m+k}=\frac{1}{mC\left(m+n,m\right)}
\]