ガンマ関数の極限問題
\[
\lim_{x\rightarrow0}\frac{\Gamma(ax)}{\Gamma(x)}=\frac{1}{a}
\]
\begin{align*}
\lim_{x\rightarrow0}\frac{\Gamma(ax)}{\Gamma(x)} & =\frac{1}{a}\lim_{x\rightarrow0}\frac{ax\Gamma(ax)}{x\Gamma(x)}\\
& =\frac{1}{a}\lim_{x\rightarrow0}\frac{\Gamma(1+ax)}{\Gamma(1+x)}\\
& =\frac{1}{a}
\end{align*}
ページ情報
タイトル | ガンマ関数の極限問題 |
URL | https://www.nomuramath.com/ioidql08/ |
SNSボタン |
ガンマ関数の1/2値
\[
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\]
第1種・第2種不完全ガンマ関数の微分
\[
\frac{\partial\Gamma\left(a,x\right)}{\partial x}=-x^{a-1}e^{-x}
\]
ガンマ関数の絶対収束条件
ガンマ関数$\Gamma\left(z\right)$は$\Re\left(z\right)>0$で絶対収束
第1種・第2種不完全ガンマ関数の基本性質
\[
\Gamma\left(1,x\right)=e^{-x}
\]