傍心円の半径
傍心円の半径
3角形\(ABC\)があり頂点\(A,B,C\)の対辺の長さを\(a,b,c\)とする。
傍心円の半径は
\[ r_{a}=\frac{S}{s-a} \] \[ r_{b}=\frac{S}{s-b} \] \[ r_{c}=\frac{S}{s-c} \] となる。
ここで\(S\)は3角形の面積、\(s\)は半周長\(s=\frac{a+b+c}{2}\)である。
3角形\(ABC\)があり頂点\(A,B,C\)の対辺の長さを\(a,b,c\)とする。
傍心円の半径は
\[ r_{a}=\frac{S}{s-a} \] \[ r_{b}=\frac{S}{s-b} \] \[ r_{c}=\frac{S}{s-c} \] となる。
ここで\(S\)は3角形の面積、\(s\)は半周長\(s=\frac{a+b+c}{2}\)である。
傍心を\(I_{a},I_{b},I_{c}\)とする。
\begin{align*} S & =\left|ABC\right|\\ & =\left|ABI_{a}\right|+\left|ACI_{a}\right|-\left|ABI_{a}\right|\\ & =\frac{1}{2}cr_{a}+\frac{1}{2}br_{b}-\frac{1}{2}ar_{c}\\ & =\frac{1}{2}\left(c+b-a\right)r_{a}\\ & =\left(s-a\right)r_{a} \end{align*} これより、
\[ r_{a}=\frac{S}{s-a} \] 同様に、
\[ r_{b}=\frac{S}{s-b} \] \[ r_{c}=\frac{S}{s-c} \]
\begin{align*} S & =\left|ABC\right|\\ & =\left|ABI_{a}\right|+\left|ACI_{a}\right|-\left|ABI_{a}\right|\\ & =\frac{1}{2}cr_{a}+\frac{1}{2}br_{b}-\frac{1}{2}ar_{c}\\ & =\frac{1}{2}\left(c+b-a\right)r_{a}\\ & =\left(s-a\right)r_{a} \end{align*} これより、
\[ r_{a}=\frac{S}{s-a} \] 同様に、
\[ r_{b}=\frac{S}{s-b} \] \[ r_{c}=\frac{S}{s-c} \]
ページ情報
タイトル | 傍心円の半径 |
URL | https://www.nomuramath.com/ivr79hcq/ |
SNSボタン |
5心(重心・垂心・内心・外心・傍心)の位置
\[
\boldsymbol{H}=\frac{\tan A\boldsymbol{A}+\tan B\boldsymbol{B}+\tan C\boldsymbol{C}}{\tan A\tan B\tan C}
\]
4角形の対角線と面積の関係
\[
S=\frac{1}{2}\left(\overrightarrow{AC}\times\overrightarrow{DB}\right)
\]
ブレートシュナイダーの公式
\[
S=\sqrt{\left(s-a\right)\left(s-b\right)\left(s-c\right)\left(s-d\right)-abcd\cos^{2}\frac{A+C}{2}}
\]
ヘロンの公式
\[
S=\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}
\]