分母に3次式の総和
分母に3次式の総和
次の総和を求めよ。
\[ \sum_{k=1}^{\infty}\frac{1}{\left(4k\right)^{3}-4k}=? \]
次の総和を求めよ。
\[ \sum_{k=1}^{\infty}\frac{1}{\left(4k\right)^{3}-4k}=? \]
\begin{align*}
\sum_{k=1}^{\infty}\frac{1}{\left(4k\right)^{3}-4k} & =\sum_{k=1}^{\infty}\frac{1}{4k\left(\left(4k\right)^{2}-1\right)}\\
& =\sum_{k=1}^{\infty}\frac{1}{4k\left(4k-1\right)\left(4k+1\right)}\\
& =\frac{1}{2}\sum_{k=1}^{\infty}\frac{1}{4k}\left(\frac{1}{4k-1}-\frac{1}{4k+1}\right)\\
& =\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{1}{4k-1}-\frac{1}{4k}-\frac{1}{4k}+\frac{1}{4k+1}\right)\\
& =\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{1}{4k-1}-\frac{1}{4k}+\frac{1}{4k+1}-\frac{1}{4k+2}-\frac{1}{4k}+\frac{1}{4k+2}\right)\\
& =\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{1}{4k-1}-\frac{1}{4k}+\frac{1}{4k+1}-\frac{1}{4k+2}\right)-\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{1}{4k}-\frac{1}{4k+2}\right)\\
& =\frac{1}{2}\sum_{k=3}^{\infty}\frac{\left(-1\right)^{k+1}}{k}-\frac{1}{4}\sum_{k=1}^{\infty}\left(\frac{1}{2k}-\frac{1}{2k+1}\right)\\
& =\frac{1}{2}\left(\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k+1}}{k}-\left(1-\frac{1}{2}\right)\right)-\frac{1}{4}\sum_{k=2}^{\infty}\left(\frac{\left(-1\right)^{k}}{k}\right)\\
& =\frac{1}{2}\left(\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k+1}}{k}-\left(1-\frac{1}{2}\right)\right)-\frac{1}{4}\sum_{k=1}^{\infty}\left(\frac{\left(-1\right)^{k}}{k}+1\right)\\
& =\left(\frac{1}{2}+\frac{1}{4}\right)\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k+1}}{k}-\frac{1}{2}\left(1-\frac{1}{2}\right)-\frac{1}{4}\\
& =\frac{3}{4}\log2-\frac{1}{2}
\end{align*}
ページ情報
タイトル | 分母に3次式の総和 |
URL | https://www.nomuramath.com/j3dlmv1t/ |
SNSボタン |
総乗の極限問題
\[
\lim_{n\rightarrow\infty}\prod_{k=1}^{n}\left(1+\frac{k}{n^{2}}\right)=?
\]
分母に総和がある数の総和
\[
\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\cdots=?
\]
偶数ゼータ関数と円周率を含む交代級数
\[
\frac{\zeta\left(2\right)}{\pi^{2}}-\frac{\zeta\left(4\right)}{\pi^{4}}+\frac{\zeta\left(6\right)}{\pi^{6}}-\frac{\zeta\left(8\right)}{\pi^{8}}+\cdots=?
\]
2項係数の3の倍数の総和
\[
\sum_{k=0}^{\infty}C\left(3n,3k\right)=?
\]