分母に3次式の総和
分母に3次式の総和
次の総和を求めよ。
\[ \sum_{k=1}^{\infty}\frac{1}{\left(4k\right)^{3}-4k}=? \]
次の総和を求めよ。
\[ \sum_{k=1}^{\infty}\frac{1}{\left(4k\right)^{3}-4k}=? \]
\begin{align*}
\sum_{k=1}^{\infty}\frac{1}{\left(4k\right)^{3}-4k} & =\sum_{k=1}^{\infty}\frac{1}{4k\left(\left(4k\right)^{2}-1\right)}\\
& =\sum_{k=1}^{\infty}\frac{1}{4k\left(4k-1\right)\left(4k+1\right)}\\
& =\frac{1}{2}\sum_{k=1}^{\infty}\frac{1}{4k}\left(\frac{1}{4k-1}-\frac{1}{4k+1}\right)\\
& =\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{1}{4k-1}-\frac{1}{4k}-\frac{1}{4k}+\frac{1}{4k+1}\right)\\
& =\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{1}{4k-1}-\frac{1}{4k}+\frac{1}{4k+1}-\frac{1}{4k+2}-\frac{1}{4k}+\frac{1}{4k+2}\right)\\
& =\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{1}{4k-1}-\frac{1}{4k}+\frac{1}{4k+1}-\frac{1}{4k+2}\right)-\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{1}{4k}-\frac{1}{4k+2}\right)\\
& =\frac{1}{2}\sum_{k=3}^{\infty}\frac{\left(-1\right)^{k+1}}{k}-\frac{1}{4}\sum_{k=1}^{\infty}\left(\frac{1}{2k}-\frac{1}{2k+1}\right)\\
& =\frac{1}{2}\left(\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k+1}}{k}-\left(1-\frac{1}{2}\right)\right)-\frac{1}{4}\sum_{k=2}^{\infty}\left(\frac{\left(-1\right)^{k}}{k}\right)\\
& =\frac{1}{2}\left(\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k+1}}{k}-\left(1-\frac{1}{2}\right)\right)-\frac{1}{4}\sum_{k=1}^{\infty}\left(\frac{\left(-1\right)^{k}}{k}+1\right)\\
& =\left(\frac{1}{2}+\frac{1}{4}\right)\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k+1}}{k}-\frac{1}{2}\left(1-\frac{1}{2}\right)-\frac{1}{4}\\
& =\frac{3}{4}\log2-\frac{1}{2}
\end{align*}
ページ情報
タイトル | 分母に3次式の総和 |
URL | https://www.nomuramath.com/j3dlmv1t/ |
SNSボタン |
2項係数の3の倍数の総和
\[
\sum_{k=0}^{\infty}C\left(3n,3k\right)=?
\]
分母にルート同士の和がある総和
\[
\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\cdots+\frac{1}{\sqrt{28}+\sqrt{29}}+\frac{1}{\sqrt{29}+\sqrt{30}}=?
\]
2項係数の対称性を使います
\[
\sum_{k=0}^{n}kC^{2}\left(n,k\right)=?
\]
分母の形に気付くかな
\[
\sum_{k=0}^{n}\frac{k!}{k!+\left(n-k\right)!}=?
\]