対数の指数
(1)
\[ a=e^{\log a} \](2)
\[ a=b^{\log_{b}a} \](3)
\[ a^{\log_{b}c}=c^{\log_{b}a} \](1)
両辺に\(\log\)を作用させると成り立っている。(2)
両辺に\(\log_{b}\)を作用させると成り立っている。(3)
\begin{align*} a^{\log_{b}c} & =c^{\left(\log_{c}a\right)\log_{b}c}\\ & =c^{\frac{\log_{c}a}{\log_{c}b}}\\ & =c^{\log_{b}a} \end{align*}ページ情報
タイトル | 対数の指数 |
URL | https://www.nomuramath.com/j4jw5knc/ |
SNSボタン |
ベルヌーイ数とリーマンゼータ関数
\[
B_{2n}=(-1)^{n+1}\frac{2(2n)!}{(2\pi)^{2n}}\zeta(2n)
\]
関数の極限
\[
\forall\epsilon>0,\exists\delta>0;\forall x\in\mathbb{R},0<\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-b\right||<\epsilon
\]
一般化調和数の通常型母関数と調和数の指数型母関数
\[
\sum_{k=1}^{\infty}H_{k,m}z^{k}=\frac{\Li_{m}(z)}{1-z}
\]
円周率
円周率πの定義と積分での表示。