対数の指数
(1)
\[ a=e^{\log a} \](2)
\[ a=b^{\log_{b}a} \](3)
\[ a^{\log_{b}c}=c^{\log_{b}a} \](1)
両辺に\(\log\)を作用させると成り立っている。(2)
両辺に\(\log_{b}\)を作用させると成り立っている。(3)
\begin{align*} a^{\log_{b}c} & =c^{\left(\log_{c}a\right)\log_{b}c}\\ & =c^{\frac{\log_{c}a}{\log_{c}b}}\\ & =c^{\log_{b}a} \end{align*}ページ情報
タイトル | 対数の指数 |
URL | https://www.nomuramath.com/j4jw5knc/ |
SNSボタン |
ラクランジュの未定乗数法
\[
F\left(x_{1},\cdots,x_{n},\lambda_{1,}\cdots,\lambda_{m}\right)=f\left(x_{1},\cdots,x_{n}\right)-\sum_{k=1}^{m}\lambda_{k}g_{k}\left(x_{1},\cdots,x_{n}\right)
\]
数列・関数の和・積・商・スカラー倍の極限
\[
\lim_{n\rightarrow\infty}a_{n}b_{n}=ab
\]
対数の公式
\[
\log M-\log N=\log\frac{M}{N}
\]
ベッセル関数のポアソン積分表示
\[
J_{\nu}(z)=\frac{1}{\sqrt{\pi}\Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{z}{2}\right)^{\nu}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{izt}dt
\]