集合と要素の定義
集合と要素の定義
いくつかのものが集まったものを集合という。
その集合を構成する1つ1つのものを要素や元という。
集合\(A\)に要素\(a\)が含まれるとき、「\(a\)は\(A\)に属す」、「\(a\)は\(A\)の要素」、「\(A\)は\(a\)を要素に持つ」などといい、\(a\in A\)または\(A\ni a\)で表す。
集合\(A\)に要素\(a\)が含まれないときは、\(a\notin A\)で表す。
いくつかのものが集まったものを集合という。
その集合を構成する1つ1つのものを要素や元という。
集合\(A\)に要素\(a\)が含まれるとき、「\(a\)は\(A\)に属す」、「\(a\)は\(A\)の要素」、「\(A\)は\(a\)を要素に持つ」などといい、\(a\in A\)または\(A\ni a\)で表す。
集合\(A\)に要素\(a\)が含まれないときは、\(a\notin A\)で表す。
\(a\in A\)を\(A\)は\(a\)を含むと表し、\(B\subseteq A\)も\(A\)は\(B\)を含むと表すと分かりにくいので、\(a\)は\(A\)を要素に持つ、\(A\)は\(B\)を包含するなどと区別するほうが分かりやすくて良い。
ページ情報
タイトル | 集合と要素の定義 |
URL | https://www.nomuramath.com/j6u5hx0k/ |
SNSボタン |
?[python3]スライスでシーケンスの一部を取り出す
"abcde"[1:3]
集合同士が交わるならば距離は0
\[
A\cap B\ne\emptyset\Rightarrow d\left(A,B\right)=0
\]
逆数の偏角と対数
\[
\Arg z^{-1}=-\Arg z+2\pi\delta_{\pi,\Arg\left(z\right)}
\]
関数の極限
\[
\forall\epsilon>0,\exists\delta>0;\forall x\in\mathbb{R},0<\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-b\right||<\epsilon
\]