無限多重根号の方程式

無限多重根号の方程式
\[ \sqrt{x+\sqrt{x+\cdots}}=\sqrt{1-\sqrt{1-\cdots}} \] を満たす実数\(x\)を求めよ。
\[ \alpha=\sqrt{1-\sqrt{1-\cdots}} \] とおくと、\(0<\alpha\)となる。
ルートの中の第2項は\(\alpha\)と同じなので、
\[ \alpha=\sqrt{1-\alpha} \] 両辺を2乗して
\[ \alpha^{2}=1-\alpha \] 移行して、
\[ \alpha^{2}+\alpha-1=0 \] \(\alpha\)についての2次方程式を解くと、
\begin{align*} \alpha & =\frac{-1\pm\sqrt{1+4}}{2}\\ & =\frac{-1\pm\sqrt{5}}{2} \end{align*} となるが、\(0<\alpha\)なので
\[ \alpha=\frac{-1+\sqrt{5}}{2} \] となる。
また与式左辺は、
\[ \sqrt{x+\sqrt{x+\cdots}}=\alpha \] となる。ルートの中の第2項は左辺と同じなので、
\begin{align*} \sqrt{x+\alpha} & =\alpha\\ & =\sqrt{1-\alpha} \end{align*} 両辺を2乗して、
\[ x+\alpha=1-\alpha \] これより、\(x\)は、
\begin{align*} x & =1-2\alpha\\ & =1-\left(-1+\sqrt{5}\right)\\ & =2-\sqrt{5} \end{align*}

ページ情報
タイトル
無限多重根号の方程式
URL
https://www.nomuramath.com/jb3ju5d3/
SNSボタン