eのπ乗とπのe乗の大小比較
eのπ乗とπのe乗の大小比較
\[ e^{\pi}\lesseqgtr\pi^{e} \]
\[ e^{\pi}\lesseqgtr\pi^{e} \]
\begin{align*}
\sgn\left(e^{\pi}-\pi^{e}\right) & =\sgn\left(\left(e^{\frac{1}{e}}\right)^{e\pi}-\left(\pi^{\frac{1}{\pi}}\right)^{e\pi}\right)\\
& =\sgn\left(e^{\frac{1}{e}}-\pi^{\frac{1}{\pi}}\right)\\
& =-1\cmt{f(x)=x^{\frac{1}{x}}\text{の増減表より}e<\pi\text{なので}\pi^{\frac{1}{\pi}}<e^{\frac{1}{e}}}
\end{align*}
これより、
\[ \pi^{e}<e^{\pi} \]
\[ \pi^{e}<e^{\pi} \]
ページ情報
タイトル | eのπ乗とπのe乗の大小比較 |
URL | https://www.nomuramath.com/jnfug3hd/ |
SNSボタン |
3乗根の有理化
\[
\frac{1}{2\cdot3^{\frac{2}{3}}+3\cdot3^{\frac{1}{3}}+2}\text{の有理化}
\]
3次式の5乗を2次式で割った余り
$\left(x^{3}+x^{2}+x+1\right)^{5}$を$x^{2}-x+1$で割った余りは?
ルート引くルートの問題
$\sqrt{2\sqrt{3}+2}-\sqrt{\sqrt{3}-\sqrt{2}}$を簡単にせよ
有理式のルートが整数になる問題
\[
\sqrt{\frac{n^{2}+83}{n^{2}+2}}\text{が整数となる}n
\]