条件収束と絶対収束の定義
条件収束と絶対収束の定義
(1)絶対収束
数列\(\left\{ a_{n}\right\} \)の各項\(a_{n}\)の絶対値をとった総和が\(\sum_{k=1}^{\infty}\left|a_{n}\right|<\infty\)となるとき、\(\sum_{k=1}^{\infty}a_{n}\)は絶対収束するという。(2)条件収束
数列\(\left\{ a_{n}\right\} \)の各項\(a_{n}\)の総和\(\sum_{k=1}^{\infty}a_{n}\)は収束するが絶対収束しない\(\sum_{k=1}^{\infty}\left|a_{n}\right|=\infty\)とき、\(\sum_{k=1}^{\infty}a_{n}\)は条件収束するという。ページ情報
タイトル | 条件収束と絶対収束の定義 |
URL | https://www.nomuramath.com/jwdb11vu/ |
SNSボタン |
ワイエルシュトラスのM判定法(優級数判定法)
上限・下限・最大元・最小元・上極限・下極限の和
\[
\sup_{n\in\mathbb{N}}\left(a_{n}+b_{n}\right)\leq\sup_{n\in\mathbb{N}}a_{n}+\sup_{n\in\mathbb{N}}b_{n}
\]
チェザロ総和とチェザロ平均の定義
\[
m_{n}=\frac{1}{n}\sum_{k=1}^{n}a_{n}
\]
上限と下限・最大元と最小元・上極限と下極限との関係
\[
\inf_{n\in\mathbb{N}}\left(-a_{n}\right)=-\sup_{n\in\mathbb{N}}\left(a_{n}\right)
\]