リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
\[ \zeta\left(s,1\right)=\zeta\left(s\right) \]
\(\zeta\left(\alpha\right)\)はリーマン・ゼータ関数
\[ \zeta\left(s,1\right)=\zeta\left(s\right) \]
-
\(\zeta\left(\alpha,\beta\right)\)はフルヴィッツ・ゼータ関数\(\zeta\left(\alpha\right)\)はリーマン・ゼータ関数
\begin{align*}
\zeta\left(s,1\right) & =\sum_{k=0}^{\infty}\frac{1}{\left(1+k\right)^{s}}\\
& =\sum_{k=1}^{\infty}\frac{1}{k^{s}}\\
& =\zeta\left(s\right)
\end{align*}
ページ情報
タイトル | リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係 |
URL | https://www.nomuramath.com/jxqyaxms/ |
SNSボタン |
ζ(4k)の総和
\[
\sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi
\]
ζ(2)の値
\[
\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\]
リーマン・ゼータ関数を含む総和
\[
\sum_{k=2}^{\infty}\frac{\zeta\left(k\right)-1}{k}=1-\gamma
\]
(*)フルヴィッツの公式
\[
\zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\}
\]