実数の複素数と複素共役の剰余演算

実数の複素数と複素共役の剰余演算

(1)

\[ \mod\left(1,\alpha\right)=\alpha\left(\overline{\mod\left(\frac{\alpha}{\left|\alpha\right|^{2}},1\right)}+i\left|\sgn\mod\left(\Im\alpha,\left|\alpha\right|^{2}\right)\right|\right) \]

(2)

\[ \mod\left(a,\alpha\right)=\alpha\left(\overline{\mod\left(\frac{a\alpha}{\left|\alpha\right|^{2}},1\right)}+i\left|\sgn\mod\left(a\Im\left(\alpha\right),\left|\alpha\right|^{2}\right)\right|\right) \]

(3)

\[ \mod\left(1,\overline{\alpha}\right)=\overline{\mod\left(1,\alpha\right)}+i\overline{\alpha}\left|\sgn\mod\left(\Im\alpha,\left|\alpha\right|^{2}\right)\right| \]

(4)

\[ \mod\left(a,\overline{\alpha}\right)=\overline{\mod\left(a,\alpha\right)}+i\overline{\alpha}\left|\sgn\mod\left(a\Im\alpha,\left|\alpha\right|^{2}\right)\right| \]

-

\(\mod\left(\alpha,\beta\right)\)は剰余演算
\(\delta_{i,j}\)はクロネッカーのデルタ

(1)

\begin{align*} \mod\left(1,\alpha\right) & =\frac{1}{\overline{\alpha}}\mod\left(\overline{\alpha},\left|\alpha\right|^{2}\right)\\ & =\frac{1}{\overline{\alpha}}\left\{ \overline{\mod\left(\alpha,\left|\alpha\right|^{2}\right)}+i\left|\alpha\right|^{2}\left|\sgn\mod\left(\Im\alpha,\left|\alpha\right|^{2}\right)\right|\right\} \\ & =\alpha\left(\overline{\mod\left(\frac{\alpha}{\left|\alpha\right|^{2}},1\right)}+i\left|\sgn\mod\left(\Im\alpha,\left|\alpha\right|^{2}\right)\right|\right) \end{align*}

(2)

\begin{align*} \mod\left(a,\alpha\right) & =a\mod\left(1,\frac{\alpha}{a}\right)\\ & =a\frac{\alpha}{a}\left(\overline{\mod\left(\frac{\alpha/a}{\left|\alpha/a\right|^{2}},1\right)}+i\left|\sgn\mod\left(\Im\left(\alpha/a\right),\left|\alpha/a\right|^{2}\right)\right|\right)\\ & =\alpha\left(\overline{\mod\left(\frac{a\alpha}{\left|\alpha\right|^{2}},1\right)}+i\left|\sgn\mod\left(a\Im\left(\alpha\right),\left|\alpha\right|^{2}\right)\right|\right) \end{align*}

(3)

\begin{align*} \mod\left(1,\overline{\alpha}\right) & =\overline{\alpha}\left(\overline{\mod\left(\frac{\overline{\alpha}}{\left|\alpha\right|^{2}},1\right)}+i\left|\sgn\mod\left(\Im\overline{\alpha},\left|\alpha\right|^{2}\right)\right|\right)\\ & =\overline{\mod\left(1,\alpha\right)}+i\overline{\alpha}\left|\sgn\mod\left(-\Im\alpha,\left|\alpha\right|^{2}\right)\right|\\ & =\overline{\mod\left(1,\alpha\right)}+i\overline{\alpha}\left|\sgn\mod\left(\Im\alpha,\left|\alpha\right|^{2}\right)\right| \end{align*}

(4)

\begin{align*} \mod\left(a,\overline{\alpha}\right) & =a\mod\left(1,\overline{\left(\frac{\alpha}{a}\right)}\right)\\ & =a\left\{ \overline{\mod\left(1,\frac{\alpha}{a}\right)}+i\overline{\left(\frac{\alpha}{a}\right)}\left|\sgn\mod\left(\Im\left(\frac{\alpha}{a}\right),\left|\frac{\alpha}{a}\right|^{2}\right)\right|\right\} \\ & =\overline{\mod\left(a,\alpha\right)}+i\overline{\alpha}\left|\sgn\mod\left(a\Im\alpha,\left|\alpha\right|^{2}\right)\right| \end{align*}

ページ情報
タイトル
実数の複素数と複素共役の剰余演算
URL
https://www.nomuramath.com/k742kaf0/
SNSボタン