コンウェイのチェーン表記の優先順位
コンウェイのチェーン表記の優先順位
次の3つは一般的に異なる。
\begin{align*} & a\rightarrow\left(b\rightarrow c\right)\\ & a\rightarrow b\rightarrow c\\ & \left(a\rightarrow b\right)\rightarrow c \end{align*}
次の3つは一般的に異なる。
\begin{align*} & a\rightarrow\left(b\rightarrow c\right)\\ & a\rightarrow b\rightarrow c\\ & \left(a\rightarrow b\right)\rightarrow c \end{align*}
-
\(\rightarrow\)はコンウェイのチェーン表記反例で示す。
\begin{align*} 2\rightarrow3\rightarrow2 & =2\uparrow^{2}3\\ & =2^{2^{2}}\\ & =2^{4}\\ & =16 \end{align*} \begin{align*} \left(2\rightarrow3\right)\rightarrow2 & =2^{3}\rightarrow2\\ & =\left(2^{3}\right)^{2}\\ & =2^{6}\\ & =64 \end{align*} \begin{align*} 2\rightarrow\left(3\rightarrow2\right) & =2\rightarrow3^{2}\\ & =2^{3^{2}}\\ & =2^{9}\\ & =512 \end{align*} 故に題意は成り立つ。
\begin{align*} 2\rightarrow3\rightarrow2 & =2\uparrow^{2}3\\ & =2^{2^{2}}\\ & =2^{4}\\ & =16 \end{align*} \begin{align*} \left(2\rightarrow3\right)\rightarrow2 & =2^{3}\rightarrow2\\ & =\left(2^{3}\right)^{2}\\ & =2^{6}\\ & =64 \end{align*} \begin{align*} 2\rightarrow\left(3\rightarrow2\right) & =2\rightarrow3^{2}\\ & =2^{3^{2}}\\ & =2^{9}\\ & =512 \end{align*} 故に題意は成り立つ。
ページ情報
タイトル | コンウェイのチェーン表記の優先順位 |
URL | https://www.nomuramath.com/k960gw58/ |
SNSボタン |
テトレーションの微分
\[
\frac{d}{dz}\left(z\uparrow^{2}n\right)=\frac{1}{z}\sum_{k=1}^{n}\left(\log^{k-1}z\right)\prod_{j=n-k}^{n}\left(z\uparrow^{2}j\right)
\]
ハイパー演算子の優先順位
\[
I_{n+1}\left(a,b\right)=I_{n+1}\left(a,b-1\right)^{\left(n\right)}a
\]
反復コンウェイのチェーン表記
\[
X\rightarrow\left(p+1\right)\rightarrow\left(q+1\right)=f^{p\circ}\left(X\right)
\]
2年生の夢(高さ2のテトレーションの0から1までの定積分)
\[
\int_{0}^{1}\frac{1}{x^{x}}dx=\sum_{k=1}^{\infty}\frac{1}{k^{k}}
\]