ゼータ関数とイータ関数とガンマ関数
ゼータ関数とイータ関数とガンマ関数
(1)ゼータ関数ととガンマ関数
\[ \zeta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-1}dx \](2)イータ関数とガンマ関数
\[ \eta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}+1}dx \](*)
\begin{align*} \sum_{k=1}^{\infty}\frac{\left(\pm1\right)^{k+1}}{k^{s}} & =\frac{1}{\Gamma\left(s\right)}\sum_{k=1}^{\infty}\left(\pm1\right)^{k+1}\frac{\Gamma\left(s\right)}{k^{s}}\\ & =\frac{1}{\Gamma\left(s\right)}\sum_{k=1}^{\infty}\left(\pm1\right)^{k+1}\mathcal{L}_{t}\left[H\left(t\right)t^{s-1}\right]\left(k\right)\\ & =\frac{1}{\Gamma\left(s\right)}\sum_{k=1}^{\infty}\left(\pm1\right)^{k+1}\int_{-\infty}^{\infty}H\left(t\right)t^{s-1}e^{-kt}dt\\ & =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}\sum_{k=1}^{\infty}\left(\pm1\right)^{k+1}e^{-kt}dt\\ & =\frac{\pm1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}\sum_{k=1}^{\infty}\left(\pm e^{-t}\right)^{k}dt\\ & =\frac{\pm1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}\frac{\pm e^{-t}}{1\mp e^{-t}}dt\\ & =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}\frac{1}{e^{t}\mp1}dt \end{align*} これより、(1)
\begin{align*} \zeta\left(s\right) & =\sum_{k=1}^{\infty}\frac{1}{k^{s}}\\ & =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}\frac{1}{e^{t}-1}dt \end{align*}(2)
\begin{align*} \eta\left(s\right) & =\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k+1}}{k^{s}}\\ & =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}\frac{1}{e^{t}+1}dt \end{align*}ページ情報
タイトル | ゼータ関数とイータ関数とガンマ関数 |
URL | https://www.nomuramath.com/krhslkcm/ |
SNSボタン |
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
\[
\zeta\left(s,1\right)=\zeta\left(s\right)
\]
完備リーマンゼータ関数の関数等式
\[
\xi(s)=\xi(1-s)
\]
フルヴィッツ・ゼータ関数の第2引数での微分とテーラー展開
\[
\frac{\partial^{n}}{\partial z^{n}}\zeta\left(s,z\right)=P\left(-s,n\right)\zeta\left(s+n,z\right)
\]