始点・終点に関して対称な形を含む総和・積分

始点・終点に関して対称な形を含む総和・積分
総和・積分で始点・終点に関して対称な形を含むとき以下が成り立つ。

分母が始点・終点に関して対称

(1)

\[ \sum_{k=a}^{b}\frac{f\left(k\right)}{f\left(k\right)+f\left(a+b-k\right)}=\frac{b-a+1}{2} \]

(2)

\[ \int_{a}^{b}\frac{f\left(x\right)}{f\left(x\right)+f\left(a+b-x\right)}dx=\frac{b-a}{2} \]
積の形

(3)

\[ \sum_{k=a}^{b}k\left\{ f\left(k,a+b-k\right)+f\left(a+b-k,k\right)\right\} =\frac{a+b}{2}\sum_{k=a}^{b}\left\{ f\left(k,a+b-k\right)+f\left(a+b-k,k\right)\right\} \]

(4)

\[ \int_{a}^{b}x\left\{ f\left(x,a+b-x\right)+f\left(a+b-x,x\right)\right\} dx=\frac{a+b}{2}\int_{a}^{b}\left\{ f\left(x,a+b-x\right)+f\left(a+b-x,x\right)\right\} dx \]
総乗

(5)

\[ \prod_{k=a}^{b}\frac{f^{2}\left(k\right)}{f\left(k\right)f\left(a+b-k\right)}=1 \]

(1)

\begin{align*} \sum_{k=a}^{b}\frac{f\left(k\right)}{f\left(k\right)+f\left(a+b-k\right)} & =\frac{1}{2}\left(\sum_{k=a}^{b}\frac{f\left(k\right)}{f\left(k\right)+f\left(a+b-k\right)}+\sum_{k=a}^{b}\frac{f\left(a+b-k\right)}{f\left(a+b-k\right)+f\left(k\right)}\right)\\ & =\frac{1}{2}\sum_{k=a}^{b}\frac{f\left(k\right)+f\left(a+b-k\right)}{f\left(k\right)+f\left(a+b-k\right)}\\ & =\frac{1}{2}\sum_{k=a}^{b}1\\ & =\frac{b-a+1}{2} \end{align*}

(2)

\begin{align*} \int_{a}^{b}\frac{f\left(x\right)}{f\left(x\right)+f\left(a+b-x\right)}dx & =\frac{1}{2}\left(\int_{a}^{b}\frac{f\left(x\right)}{f\left(x\right)+f\left(a+b-x\right)}dx+\int_{a}^{b}\frac{f\left(a+b-x\right)}{f\left(a+b-x\right)+f\left(x\right)}dx\right)\\ & =\frac{1}{2}\int_{a}^{b}\frac{f\left(x\right)+f\left(a+b-x\right)}{f\left(x\right)+f\left(a+b-x\right)}dx\\ & =\frac{1}{2}\int_{a}^{b}dx\\ & =\frac{b-a}{2} \end{align*}

(3)

\begin{align*} \sum_{k=a}^{b}k\left\{ f\left(k,a+b-k\right)+f\left(a+b-k,k\right)\right\} & =\frac{1}{2}\left\{ \sum_{k=a}^{b}k\left\{ f\left(k,a+b-k\right)+f\left(a+b-k,k\right)\right\} +\sum_{k=a}^{b}\left(a+b-k\right)\left\{ f\left(a+b-k,k\right)+f\left(k,a+b-k\right)\right\} \right\} \\ & =\frac{1}{2}\sum_{k=a}^{b}\left(a+b\right)\left\{ f\left(k,a+b-k\right)+f\left(a+b-k,k\right)\right\} \\ & =\frac{a+b}{2}\sum_{k=a}^{b}\left\{ f\left(k,a+b-k\right)+f\left(a+b-k,k\right)\right\} \end{align*}

(4)

\begin{align*} \int_{a}^{b}x\left\{ f\left(x,a+b-x\right)+f\left(a+b-x,x\right)\right\} dx & =\frac{1}{2}\left\{ \int_{a}^{b}x\left\{ f\left(x,a+b-x\right)+f\left(a+b-x,x\right)\right\} dx+\int_{a}^{b}\left(a+b-x\right)\left\{ f\left(a+b-x,x\right)+f\left(x,a+b-x\right)\right\} dx\right\} \\ & =\frac{1}{2}\int_{a}^{b}\left(a+b\right)\left\{ f\left(x,a+b-x\right)+f\left(a+b-x,x\right)\right\} dx\\ & =\frac{a+b}{2}\int_{a}^{b}\left\{ f\left(x,a+b-x\right)+f\left(a+b-x,x\right)\right\} dx \end{align*}

(5)

\begin{align*} \prod_{k=a}^{b}\frac{f^{2}\left(k\right)}{f\left(k\right)f\left(a+b-k\right)} & =\sqrt{\prod_{k=a}^{b}\frac{f^{2}\left(k\right)}{f\left(k\right)f\left(a+b-k\right)}\prod_{k=a}^{b}\frac{f^{2}\left(a+b-k\right)}{f\left(a+b-k\right)f\left(k\right)}}\\ & =\sqrt{\prod_{k=a}^{b}\frac{f^{2}\left(k\right)f^{2}\left(a+b-k\right)}{f^{2}\left(k\right)f^{2}\left(a+b-k\right)}}\\ & =\sqrt{\prod_{k=a}^{b}1}\\ & =1 \end{align*}

ページ情報
タイトル
始点・終点に関して対称な形を含む総和・積分
URL
https://www.nomuramath.com/kycm0sry/
SNSボタン