ラッセルのパラドックス
ラッセルのパラドックス
自分自身を要素として持たない集合全体の集合\(R=\left\{ A;A\notin A\right\} \)は存在しない。
自分自身を要素として持たない集合全体の集合\(R=\left\{ A;A\notin A\right\} \)は存在しない。
\(R\in R\)と仮定すると、\(R\)の定義より\(R\notin R\)となり矛盾。
また、\(R\notin R\)と仮定すると、\(R\)の定義より\(R\in R\)となり矛盾。
故に集合\(R\)は存在しない。
また、\(R\notin R\)と仮定すると、\(R\)の定義より\(R\in R\)となり矛盾。
故に集合\(R\)は存在しない。
ページ情報
タイトル | ラッセルのパラドックス |
URL | https://www.nomuramath.com/luoi3e13/ |
SNSボタン |
ガンマ関数のルジャンドル倍数公式
\[
\Gamma(2z)=\frac{2^{2z-1}}{\sqrt{\pi}}\Gamma(z)\Gamma\left(z+\frac{1}{2}\right)
\]
第1可算と第2可算の定義と性質
2項係数の総和
\[
\sum_{k=0}^{n}P(k,m)C(n,k)=P(n,m)2^{n-m}
\]
独立と無相関の定義
\[
P\left(X=x,Y=y\right)=P(X=x)P(Y=y)
\]