ラッセルのパラドックス
ラッセルのパラドックス
自分自身を要素として持たない集合全体の集合\(R=\left\{ A;A\notin A\right\} \)は存在しない。
自分自身を要素として持たない集合全体の集合\(R=\left\{ A;A\notin A\right\} \)は存在しない。
\(R\in R\)と仮定すると、\(R\)の定義より\(R\notin R\)となり矛盾。
また、\(R\notin R\)と仮定すると、\(R\)の定義より\(R\in R\)となり矛盾。
故に集合\(R\)は存在しない。
また、\(R\notin R\)と仮定すると、\(R\)の定義より\(R\in R\)となり矛盾。
故に集合\(R\)は存在しない。
ページ情報
| タイトル | ラッセルのパラドックス | 
| URL | https://www.nomuramath.com/luoi3e13/ | 
| SNSボタン | 
『冪乗の対数』を更新しました。
 上限位相空間・下限位相空間は非連結
 n乗同士の和と差の因数分解
\[
a^{2n+1}\pm b^{2n+1}=\left(a\pm b\right)\left(\sum_{k=0}^{2n}\left(\mp1\right)^{k}a^{2n-k}b^{k}\right)
\]
 『近傍・開近傍・近傍系・開近傍系・基本近傍系・開基・準開基の定義と性質』を更新しました。
 
