第2種チェビシェフ多項式の因数分解
第2種チェビシェフ多項式の因数分解
(1)
\[ U_{2n-1}(x)=2U_{n-1}(x)T_{n}(x) \](2)
\[ U_{2n}(x)=(-1)^{n}W_{n}(x)W_{n}(-x) \] \(W(x)\)は第4種チェビシェフ多項式である。(1)
\begin{align*} U_{2n-1}(x) & =\frac{\sin(2n\cos^{\bullet}x)}{\sin\cos^{\bullet}x}\\ & =\frac{2\sin(n\cos^{\bullet}x)\cos(n\cos^{\bullet}x)}{\sin\cos^{\bullet}x}\\ & =2U_{n-1}(x)T_{n}(x) \end{align*}(2)
\begin{align*} U_{2n}(x) & =2^{2n}\prod_{k=1}^{2n}\left(x-\cos\frac{k\pi}{2n+1}\right)\\ & =2^{2n}\prod_{k=1}^{n}\left(x-\cos\frac{2k\pi}{2n+1}\right)\prod_{k=1}^{n}\left(x-\cos\frac{(2k-1)\pi}{2n+1}\right)\\ & =2^{2n}\prod_{k=1}^{n}\left(x-\cos\frac{2k\pi}{2n+1}\right)\prod_{k=1}^{n}\left(x+\cos\left(\pi-\frac{(2k-1)\pi}{2n+1}\right)\right)\\ & =2^{2n}\prod_{k=1}^{n}\left(x-\cos\frac{2k\pi}{2n+1}\right)\prod_{k=1}^{n}\left(x+\cos\left(\frac{2(n-k+1)\pi}{2n+1}\right)\right)\\ & =2^{n}\prod_{k=1}^{n}\left(x-\cos\frac{2k\pi}{2n+1}\right)2^{n}\prod_{k=1}^{n}\left(x+\cos\frac{2k\pi}{2n+1}\right)\\ & =(-1)^{n}2^{n}\prod_{k=1}^{n}\left(x-\cos\frac{k\pi}{n+\frac{1}{2}}\right)2^{n}\prod_{k=1}^{n}\left(-x-\cos\frac{k\pi}{n+\frac{1}{2}}\right)\\ & =(-1)^{n}W_{n}(x)W_{n}(-x) \end{align*}ページ情報
タイトル | 第2種チェビシェフ多項式の因数分解 |
URL | https://www.nomuramath.com/m21yfsul/ |
SNSボタン |
チェビシェフ多項式の奇遇性
\[
T_{n}(-x)=(-1)^{n}T_{n}(x)
\]
チェビシェフ多項式の積表示
\[
T_{n}(x)=2^{n}\prod_{k=1}^{n}\left(x-\cos\left(\frac{2k-1}{2n}\pi\right)\right)
\]
チェビシェフ多項式の級数表示
\[
T_{n}(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2}\right\rfloor }\left(C(n,2k)\left(-1\right)^{k}\left(1-x^{2}\right)^{k}x^{n-2k}\right)
\]
チェビシェフ多項式の母関数
\[
\sum_{k=0}^{\infty}T_{k}(x)t^{k}=\frac{1-tx}{1-2tx+t^{2}}
\]