階乗冪(上昇階乗・下降階乗)の1項間漸化式 by nomura · 2020年6月11日 Follow @nomuramath (1) P(x+1,y)=x+1x−y+1P(x,y) (2) P(x−1,y)=x−yxP(x,y) (3) P(x,y+1)=(x−y)P(x,y) (4) P(x,y−1)=1x−y+1P(x,y) (5) Q(x+1,y)=x+yxQ(x,y) (6) Q(x−1,y)=x−1x+y−1Q(x,y) (7) Q(x,y+1)=(x+y)Q(x,y) (8) Q(x,y−1)=1x+y−1Q(x,y)(1) P(x+1,y)=(x+1)!(x+1−y)!=x+1x+1−yx!(x−y)!=x+1x−y+1P(x,y) (2) P(x−1,y)=(x−1)!(x−1−y)!=x−yxx!(x−y)!=x−yxP(x,y) (3) P(x,y+1)=x!(x−y−1)!=(x−y)x!(x−y)!=(x−y)P(x,y) (4) P(x,y−1)=x!(x−y+1)!=1x−y+1x!(x−y)!=1x−y+1P(x,y) (5) Q(x+1,y)=(x+1+y−1)!(x+1−1)!=x+yx(x+y−1)!(x−1)!=x+yxQ(x,y) (6) Q(x−1,y)=(x−1+y−1)!(x−1−1)!=x−1x+y−1(x+y−1)!(x−1)!=x−1x+y−1Q(x,y) (7) Q(x,y+1)=(x+y+1−1)!(x−1)!=(x+y)(x+y−1)!(x−1)!=(x+y)Q(x,y) (8) Q(x,y−1)=(x+y−1−1)!(x−1)!=1x+y−1(x+y−1)!(x−1)!=1x+y−1Q(x,y) ページ情報タイトル階乗冪(上昇階乗・下降階乗)の1項間漸化式URLhttps://www.nomuramath.com/n0lg5oq0/SNSボタンTweet 階乗冪(上昇階乗・下降階乗)同士の関係P(x,y)=P−1(x−y,−y) 階乗冪(上昇階乗・下降階乗)とその逆数の値が0となるとき∀m,n∈Z,0≤m<n⇔P(m,n)=0 階乗冪(下降階乗・上昇階乗)の和分∑k=1mP(k,n)=1n+1P(m+1,n+1) 和の階乗冪(下降階乗・上昇階乗)P(x+y,n)=∑k=0nC(n,k)P(x,k)P(y,n−k)