順序対の定義

順序対の定義

(1)順序対

2つの対象\(a,b\)を順番も考慮し組にしたものを順序対といい、\(a,b\)の順に指定するなら\(\left(a,b\right)\)と表記する。
\(\left(a_{1},b_{1}\right)=\left(a_{2},b_{2}\right)\)となるのは、\(a_{1}=a_{2}\land b_{1}=b_{2}\)となるときのみ、すなわち\(\left(a_{1},b_{1}\right)=\left(a_{2},b_{2}\right)\Leftrightarrow a_{1}=a_{2}\land b_{1}=b_{2}\)である。
3つの順序対は\(\left(a,b,c\right)=\left(a,\left(b,c\right)\right)\)や\(\left(a,b,c\right)=\left(\left(a,b\right),c\right)\)とすればいい。

(2)順序対の定義

ハウスドルフの定義
\(\left(a,b\right):=\left\{ \left\{ a,1\right\} ,\left\{ b,2\right\} \right\} \)とする。
クラトフスキーの定義
\(\left(a,b\right):=\left\{ \left\{ a\right\} ,\left\{ a,b\right\} \right\} \)とする。
このとき、\(\left(a,a\right)=\left\{ \left\{ a\right\} ,\left\{ a,a\right\} \right\} =\left\{ \left\{ a\right\} ,\left\{ a\right\} \right\} =\left\{ \left\{ a\right\} \right\} \)となる。

ページ情報
タイトル
順序対の定義
URL
https://www.nomuramath.com/n3uwlg7w/
SNSボタン