3角形の垂心と円に内接する4角形
3角形の垂心と円に内接する4角形
3角形\(ABC\)があり垂心を\(H\)として直線\(AH\)と直線\(BC\)の交点を\(P\)、直線\(BH\)と直線\(CA\)の交点を\(Q\)、直線\(CH\)と直線\(AB\)の交点を\(R\)とする。
このとき4角形\(ARHQ,BPHR,CQHP\)は円に内接する。

3角形\(ABC\)があり垂心を\(H\)として直線\(AH\)と直線\(BC\)の交点を\(P\)、直線\(BH\)と直線\(CA\)の交点を\(Q\)、直線\(CH\)と直線\(AB\)の交点を\(R\)とする。
このとき4角形\(ARHQ,BPHR,CQHP\)は円に内接する。
\(\angle ARH=\angle HQA=90^{\circ}\)で\(\angle ARH+\angle HQA=180^{\circ}\)なので4角形\(ARHQ\)は円に内接する。
4角形\(BPHR,CQHP\)も同様である。
4角形\(BPHR,CQHP\)も同様である。
ページ情報
タイトル | 3角形の垂心と円に内接する4角形 |
URL | https://www.nomuramath.com/nh6bw354/ |
SNSボタン |
ヘロンの公式
\[
S=\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}
\]
5心と頂点までの距離
\[
\left|AG\right|^{2}=\frac{-a^{2}+2b^{2}+2c^{2}}{9}
\]
正弦定理
\[
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R
\]
3角形の頂角と対辺の大小関係
\[
A<B\Leftrightarrow a<b
\]