第1種・第2種スターリング数の性質

第1種・第2種スターリング数の性質
第1種スターリング数と第2種スターリング数について以下が成り立つ。

第1種スターリング数の性質

(1)

\[ \sum_{k=0}^{n}\left(-1\right)^{n+k}S_{1}\left(n,k\right)=n! \]

(2)

\[ \sum_{k=0}^{n}\left(-1\right)^{n+k}2^{k}S_{1}\left(n,k\right)=\left(n+1\right)! \]

(3)

\[ \sum_{k=0}^{n}S_{1}\left(n,k\right)=\delta_{0n}+\delta_{1n} \]
第2種スターリング数の性質

(4)

\[ \sum_{k=1}^{n}\left(-1\right)^{k}\left(k-1\right)!S_{2}\left(n,k\right)=-\delta_{1n} \]

(5)

\[ \sum_{k=0}^{n}\left(-1\right)^{n+k}k!S_{2}\left(n,k\right)=1 \]

(6)

\[ \sum_{k=0}^{n}\left(-1\right)^{n+k}\left(k-1\right)!S_{2}\left(n,k\right)=2^{n} \]

-

\(S_{1}\left(n,k\right)\)は第1種スターリング数
\(S_{2}\left(n,k\right)\)は第2種スターリング数

(1)

\begin{align*} \sum_{k=0}^{n}\left(-1\right)^{n+k}S_{1}\left(n,k\right) & =\left(-1\right)^{n}\sum_{k=0}^{n}S_{1}\left(n,k\right)\left(-1\right)^{k}\\ & =\left(-1\right)^{n}P\left(-1,n\right)\\ & =Q\left(1,n\right)\\ & =n! \end{align*}

(2)

\begin{align*} \sum_{k=0}^{n}\left(-1\right)^{n+k}2^{k}S_{1}\left(n,k\right) & =\left(-1\right)^{n}\sum_{k=0}^{n}S_{1}\left(n,k\right)\left(-2\right)^{k}\\ & =\left(-1\right)^{n}P\left(-2,n\right)\\ & =Q\left(2,n\right)\\ & =\left(n+1\right)! \end{align*}

(3)

\begin{align*} \sum_{k=0}^{n}S_{1}\left(n,k\right) & =\sum_{k=0}^{n}S_{1}\left(n,k\right)1^{k}\\ & =P\left(1,n\right)\\ & =\delta_{1,n}+\delta_{0,n} \end{align*}

(4)

\begin{align*} \sum_{k=1}^{n}\left(-1\right)^{k}\left(k-1\right)!S_{2}\left(n,k\right) & =\sum_{k=1}^{n}\left(-1\right)^{k}\left(k-1\right)!\left\{ S_{2}\left(n-1,k-1\right)+kS_{2}\left(n-1,k\right)\right\} \\ & =\sum_{k=1}^{n}\left(-1\right)^{k}\left(k-1\right)!S_{2}\left(n-1,k-1\right)+\sum_{k=1}^{n}\left(-1\right)^{k}k!S_{2}\left(n-1,k\right)\\ & =\sum_{k=0}^{n-1}\left(-1\right)^{k+1}k!S_{2}\left(n-1,k\right)-\sum_{k=1}^{n}\left(-1\right)^{k+1}k!S_{2}\left(n-1,k\right)\\ & =\left[\left(-1\right)^{k+1}k!S_{2}\left(n-1,k\right)\right]_{k=n}^{k=0}\\ & =\left(-1\right)0!S_{2}\left(n-1,0\right)-\left(-1\right)^{n+1}n!S_{2}\left(n-1,n\right)\\ & =-S_{2}\left(n-1,0\right)\\ & =-\delta_{1n} \end{align*}

(5)

\begin{align*} \sum_{k=0}^{n}\left(-1\right)^{n+k}k!S_{2}\left(n,k\right) & =\left(-1\right)^{n}\sum_{k=0}^{n}P(-1,k)S_{2}\left(n,k\right)\\ & =\left(-1\right)^{n}\left(-1\right)^{n}\\ & =1 \end{align*}

(6)

\begin{align*} \sum_{k=0}^{n}\left(-1\right)^{n+k}\left(k-1\right)!S_{2}\left(n,k\right) & =\left(-1\right)^{n}\sum_{k=0}^{n}P\left(-2,k\right)S_{2}\left(n,k\right)\\ & =\left(-1\right)^{n}\left(-2\right)^{n}\\ & =2^{n} \end{align*}

ページ情報
タイトル
第1種・第2種スターリング数の性質
URL
https://www.nomuramath.com/nmwl7dwt/
SNSボタン