位相空間での閉集合系による位相
位相空間での閉集合系による位相
位相空間\(\left(X,\mathcal{O}\right)\)があるとき、閉集合系を\(\mathcal{F}\)とするとき次の3条件を満たす。
位相空間\(\left(X,\mathcal{O}\right)\)があるとき、閉集合系を\(\mathcal{F}\)とするとき次の3条件を満たす。
(a)空集合、全体集合
\[ \emptyset,X\in\mathcal{F} \](b)閉集合の有限和集合
\[ F_{1},\cdots,F_{n}\in\mathcal{F}\rightarrow\bigcup_{k=1}^{n}F_{k}\in\mathcal{F} \](c)閉集合の積集合
\[ \forall\lambda_{0}\in\Lambda,F_{\lambda_{0}}\in\mathcal{F}\rightarrow\bigcap_{\lambda\in\Lambda}F_{\lambda}\in\mathcal{F} \]位相空間になるためには
\[ \emptyset,X\in\mathcal{O} \] \[ O_{1},\cdots,O_{n}\in\mathcal{O}\rightarrow\bigcap_{k=1}^{n}O_{k}\in\mathcal{O} \] \[ \forall\lambda_{0}\in\Lambda,O_{\lambda_{0}}\in\mathcal{O}\rightarrow\bigcup_{\lambda\in\Lambda}O_{\lambda}\in\mathcal{O} \] の3つが成り立てばいいので閉集合系\(\mathcal{F}\)でこれを表せばいい。
\(X\in\mathcal{O}\Leftrightarrow\emptyset^{c}\in\mathcal{O}\Leftrightarrow\emptyset\in\mathcal{F}\)
故に\(\emptyset,X\in\mathcal{O}\Leftrightarrow\)\(\emptyset,X\in\mathcal{F}\)となる。
\begin{align*} O_{1},\cdots,O_{n}\in\mathcal{O}\rightarrow\bigcap_{k=1}^{n}O_{k}\in\mathcal{O} & \Leftrightarrow O_{1}^{c},\cdots,O_{n}^{c}\in\mathcal{F}\rightarrow\left(\bigcup_{k=1}^{n}F_{k}\right)^{c}\in\mathcal{O}\\ & \Leftrightarrow F_{1},\cdots,F_{n}\in\mathcal{F}\rightarrow\bigcup_{k=1}^{n}F_{k}\in\mathcal{F} \end{align*} となる。
故に開集合の有限積集合と閉集合の有限和集合は同値となる。
\begin{align*} \forall\lambda_{0}\in\Lambda,O_{\lambda_{0}}\in\mathcal{O}\rightarrow\bigcup_{\lambda\in\Lambda}O_{\lambda}\in\mathcal{O} & \Leftrightarrow\forall\lambda_{0}\in\Lambda,F_{\lambda_{0}}^{c}\in\mathcal{O}\rightarrow\left(\bigcap_{\lambda\in\Lambda}O_{\lambda}^{c}\right)^{c}\in\mathcal{O}\\ & \Leftrightarrow\forall\lambda_{0}\in\Lambda,F_{\lambda_{0}}\in\mathcal{F}\rightarrow\bigcap_{\lambda\in\Lambda}F_{\lambda}\in\mathcal{F} \end{align*} となる。
故に開集合の和集合と閉集合の積集合は同値となる。
\[ \emptyset,X\in\mathcal{O} \] \[ O_{1},\cdots,O_{n}\in\mathcal{O}\rightarrow\bigcap_{k=1}^{n}O_{k}\in\mathcal{O} \] \[ \forall\lambda_{0}\in\Lambda,O_{\lambda_{0}}\in\mathcal{O}\rightarrow\bigcup_{\lambda\in\Lambda}O_{\lambda}\in\mathcal{O} \] の3つが成り立てばいいので閉集合系\(\mathcal{F}\)でこれを表せばいい。
(a)
\(\emptyset\in\mathcal{O}\Leftrightarrow X^{c}\in\mathcal{O}\Leftrightarrow X\in\mathcal{F}\)\(X\in\mathcal{O}\Leftrightarrow\emptyset^{c}\in\mathcal{O}\Leftrightarrow\emptyset\in\mathcal{F}\)
故に\(\emptyset,X\in\mathcal{O}\Leftrightarrow\)\(\emptyset,X\in\mathcal{F}\)となる。
(b)
開集合の補集合は閉集合なので\(O_{k}^{c}=F_{k}\)とおくと、\begin{align*} O_{1},\cdots,O_{n}\in\mathcal{O}\rightarrow\bigcap_{k=1}^{n}O_{k}\in\mathcal{O} & \Leftrightarrow O_{1}^{c},\cdots,O_{n}^{c}\in\mathcal{F}\rightarrow\left(\bigcup_{k=1}^{n}F_{k}\right)^{c}\in\mathcal{O}\\ & \Leftrightarrow F_{1},\cdots,F_{n}\in\mathcal{F}\rightarrow\bigcup_{k=1}^{n}F_{k}\in\mathcal{F} \end{align*} となる。
故に開集合の有限積集合と閉集合の有限和集合は同値となる。
(c)
開集合の補集合は閉集合なので\(O_{k}^{c}=F_{k}\)とおくと、\begin{align*} \forall\lambda_{0}\in\Lambda,O_{\lambda_{0}}\in\mathcal{O}\rightarrow\bigcup_{\lambda\in\Lambda}O_{\lambda}\in\mathcal{O} & \Leftrightarrow\forall\lambda_{0}\in\Lambda,F_{\lambda_{0}}^{c}\in\mathcal{O}\rightarrow\left(\bigcap_{\lambda\in\Lambda}O_{\lambda}^{c}\right)^{c}\in\mathcal{O}\\ & \Leftrightarrow\forall\lambda_{0}\in\Lambda,F_{\lambda_{0}}\in\mathcal{F}\rightarrow\bigcap_{\lambda\in\Lambda}F_{\lambda}\in\mathcal{F} \end{align*} となる。
故に開集合の和集合と閉集合の積集合は同値となる。
-
これらより、(a),(b),(c)の3条件を満たせばいい。ページ情報
タイトル | 位相空間での閉集合系による位相 |
URL | https://www.nomuramath.com/ntbqqdqm/ |
SNSボタン |
(*)オイラー多項式とベルヌーイ数・ベルヌーイ多項式との関係
\[
E_{n-1}\left(x\right)=\frac{2}{n}\sum_{k=0}^{n}C\left(n,k\right)\left(1-2^{k}\right)B_{k}x^{n-k}
\]
分母に2乗根と3乗根の積分
\[
\int\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}dx=2x^{\frac{1}{2}}-3x^{\frac{1}{3}}+6x^{\frac{1}{6}}-6\log\left(1+x^{\frac{1}{6}}\right)
\]
相補誤差関数と虚数誤差関数の表示
\[
erfc(x)=\frac{2}{\sqrt{\pi}}\int_{x}^{\infty}e^{-t^{2}}dt
\]
距離空間ではコンパクト集合と点列コンパクト集合とは同値