ガンマ関数の微分
ガンマ関数の微分は以下の通りになる。
\[ \frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z) \] ここで\(\psi(z)\)はディガンマ関数である。
\[ \frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z) \] ここで\(\psi(z)\)はディガンマ関数である。
\begin{align*}
\frac{d}{dz}\Gamma(z) & =\Gamma(z)\frac{d}{dz}\log\left(\Gamma(z)\right)\\
& =\Gamma(z)\psi(z)
\end{align*}
ページ情報
タイトル | ガンマ関数の微分 |
URL | https://www.nomuramath.com/ntcr6sqv/ |
SNSボタン |
階乗と階乗の逆数の母関数
\[
\frac{x^{a}}{a!}=e^{x}\left(\frac{\Gamma\left(a+1,x\right)}{\Gamma\left(a+1\right)}-\frac{\Gamma\left(a,x\right)}{\Gamma\left(a\right)}\right)
\]
ガンマ関数の非正整数近傍での値
\[
\lim_{\epsilon\rightarrow\pm0}\Gamma\left(-\epsilon\right)=-\lim_{\epsilon\rightarrow\pm0}\Gamma\left(\epsilon\right)
\]
ディガンマ関数・ポリガンマ関数の相反公式
\[
\psi\left(1-z\right)-\psi\left(z\right)=\pi\tan^{-1}\left(\pi z\right)
\]
そのままだとΓ(0)になる積分
\[
\int_{0}^{\infty}\left(x^{-1}e^{-x}-\frac{e^{-nx}}{1-e^{-x}}\right)dx=H_{n-1}-\gamma
\]