相補誤差関数と虚数誤差関数の表示
相補誤差関数と虚数誤差関数の表示
(1)相補誤差関数
\[ erfc(x)=\frac{2}{\sqrt{\pi}}\int_{x}^{\infty}e^{-t^{2}}dt \](2)虚数誤差関数
\[ erfi(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{s^{2}}ds \](1)
\begin{align*} erfc(x) & =1-erf(x)\\ & =\frac{2}{\sqrt{\pi}}\int_{0}^{\infty}e^{-t^{2}}dt-\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt\\ & =\frac{2}{\sqrt{\pi}}\int_{x}^{\infty}e^{-t^{2}}dt \end{align*}(2)
\begin{align*} erfi(x) & =-ierf(ix)\\ & =-i\frac{2}{\sqrt{\pi}}\int_{0}^{ix}e^{-t^{2}}dt\\ & =\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{s^{2}}ds\cmt{s=-it} \end{align*}ページ情報
タイトル | 相補誤差関数と虚数誤差関数の表示 |
URL | https://www.nomuramath.com/ong5790r/ |
SNSボタン |
無相関のときに成り立つ関係
\[
E(XY)=E(X)E(Y)
\]
期待値・分散・共分散などの定義
\[
E(X)=\int_{-\infty}^{\infty}xP(x)dx
\]
中心極限定理
\[
\lim_{n\rightarrow\infty}\frac{1}{\sqrt{n}\sigma}\left(\sum_{i=1}^{n}X_{i}-n\mu\right)=N(0,1)
\]
共分散公式と分散公式
\[
Cov(X,Y)=E(XY)-E(X)E(Y)
\]