単位分数とエジプト式分数の定義
単位分数とエジプト式分数の定義
(1)単位分数
真分数で分子が1の分数を単位分数という。(2)エジプト式分数
ある分数を同じ単位分数を用いず複数(2つ以上)の単位分数の和で表したものをエジプト式分数という。(1)単位分数の例
\[ \frac{1}{2},\frac{1}{3},\frac{1}{4} \] \(\frac{1}{1}\)は真分数ではないので単位分数ではない。(2)エジプト式分数の例
\[ \frac{1}{2}+\frac{1}{3},\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \] \(\frac{1}{3}+\frac{1}{3}\)は同じ単位分数が使われているのでエジプト式分数ではない。ページ情報
タイトル | 単位分数とエジプト式分数の定義 |
URL | https://www.nomuramath.com/oqy8tpfj/ |
SNSボタン |
エジプト式分数表示
任意の正の真分数はエジプト式分数で表せる。
凸関数・狭義凸関数・準凸関数・凹関数・狭義凹関数・準凹関数の定義
\[
\forall x_{1},x_{2}\in X,\forall t\in\left[0,1\right],f\left(tx_{1}+\left(1-t\right)x_{2}\right)\leq tf\left(x_{1}\right)+\left(1-t\right)f\left(x_{2}\right)
\]
区分的に連続と区分的に滑らかの定義
エジプト式分数の個数
エジプト式分数は無数に存在する。