誤差関数・相補誤差関数・虚数誤差関数の定義
誤差関数・相補誤差関数・虚数誤差関数の定義
(1)誤差関数
\[ erf(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt \](2)相補誤差関数
\[ erfc(x)=1-erf(x) \](3)虚数誤差関数
\[ erfi(x)=-ierf(ix) \]ページ情報
タイトル | 誤差関数・相補誤差関数・虚数誤差関数の定義 |
URL | https://www.nomuramath.com/ovfv1vqx/ |
SNSボタン |
共分散公式と分散公式
\[
Cov(X,Y)=E(XY)-E(X)E(Y)
\]
中心極限定理
\[
\lim_{n\rightarrow\infty}\frac{1}{\sqrt{n}\sigma}\left(\sum_{i=1}^{n}X_{i}-n\mu\right)=N(0,1)
\]
分散の基本的性質
\[
V\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i,j}a_{i}a_{j}Cov\left(X_{i},X_{j}\right)
\]
独立と無相関の定義
\[
P\left(X=x,Y=y\right)=P(X=x)P(Y=y)
\]