数列の極限
数列\(\{a_{n}\}\)が
\[ \forall\epsilon>0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow|a_{n}-b|<\epsilon \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=b \] で表し、「数列\(\{a_{n}\}\)は\(b\)に収束する」という。
\[ \forall\epsilon>0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow|a_{n}-b|<\epsilon \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=b \] で表し、「数列\(\{a_{n}\}\)は\(b\)に収束する」という。
数列\(\{a_{n}\}\)が
\[ \forall K>0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow a_{n}> K \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=\infty \] で表し、「数列\(\{a_{n}\}\)は正の無限大に発散する」という。
同様に
\[ \forall K<0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow a_{n}<K \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=-\infty \] で表し、「数列\(\{a_{n}\}\)は負の無限大に発散する」という。
\[ \forall K>0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow a_{n}> K \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=\infty \] で表し、「数列\(\{a_{n}\}\)は正の無限大に発散する」という。
同様に
\[ \forall K<0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow a_{n}<K \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=-\infty \] で表し、「数列\(\{a_{n}\}\)は負の無限大に発散する」という。
ページ情報
タイトル | 数列の極限 |
URL | https://www.nomuramath.com/oyojhum9/ |
SNSボタン |
ライプニッツ級数
一般化調和数の通常型母関数と調和数の指数型母関数
\[
\sum_{k=1}^{\infty}H_{k,m}z^{k}=\frac{\Li_{m}(z)}{1-z}
\]
ベッセル関数のポアソン積分表示
\[
J_{\nu}(z)=\frac{1}{\sqrt{\pi}\Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{z}{2}\right)^{\nu}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{izt}dt
\]
(*)log(1-x)のn乗の展開
\[
\log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n}
\]