2つの整数の逆数を足すと和の逆数になる整数は存在するか?
\[
\frac{1}{m}+\frac{1}{n}=\frac{1}{m+n},m=?,n=?
\]
偶関数の分母に指数関数+1がある対称な定積分
\[
\int_{-c}^{c}\frac{f_{e}\left(x\right)}{1+a^{x}}dx=\int_{0}^{c}f_{e}\left(x\right)dx
\]
表と裏のコインの枚数を揃える
目隠しされていて表と裏のコインの枚数を揃えるにはどうすればいいでしょうか?
下りエレベータの確率
次にエレベーターが着いたときに下りの確率はいくつでしょうか?
ガンマ関数を2つ含む定積分でカタラン定数が出てきます
\[
\int_{0}^{\frac{1}{2}}\Gamma\left(1-x\right)\Gamma\left(1+x\right)dx=?
\]
複素ガンマ関数2つを含む広義積分
\[
\int_{-\infty}^{\infty}\Gamma\left(1-ix\right)\Gamma\left(1+ix\right)dx=?
\]
2項係数の3の倍数の総和
\[
\sum_{k=0}^{\infty}C\left(3n,3k\right)=?
\]
2項係数の飛び飛びの総和
\[
\sum_{k=-\infty}^{\infty}C\left(mn,mk+l\right)=\frac{1}{m}\sum_{j=0}^{m-1}\left(1+\omega_{m}^{j}\right)^{mn}\left(\omega_{m}^{j}\right)^{-l}
\]
1のn乗根のべき乗の総和
\[
\sum_{k=0}^{n-1}\left(\omega_{n}^{\;k}\right)^{m}=n\delta_{0,\mod\left(m,n\right)}
\]
係数が何の値か気付けるかな
\[
x=1+\sqrt[5]{2}+\sqrt[5]{4}+\sqrt[5]{8}+\sqrt[5]{16},\frac{1}{x^{5}}+\frac{5}{x^{4}}+\frac{10}{x^{3}}+\frac{10}{x^{2}}+\frac{5}{x}+1=?
\]
展開はしないほうがいいです
\[
\left(x+y\right)^{2}\left(xy-1\right)+1\text{を因数分解}
\]
まずは分母から処理しましょう
\[
\frac{2^{11}+3^{8}+6^{5}}{2^{5}+2^{8}+3^{6}}=?
\]
分母にルート同士の和がある総和
\[
\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\cdots+\frac{1}{\sqrt{28}+\sqrt{29}}+\frac{1}{\sqrt{29}+\sqrt{30}}=?
\]
2項係数の対称性を使います
\[
\sum_{k=0}^{n}kC^{2}\left(n,k\right)=?
\]
分母の形に気付くかな
\[
\sum_{k=0}^{n}\frac{k!}{k!+\left(n-k\right)!}=?
\]
始点・終点に関して対称な形を含む総和・積分
\[
\sum_{k=a}^{b}\frac{f\left(k\right)}{f\left(k\right)+f\left(a+b-k\right)}=\frac{b-a+1}{2}
\]
総和・総乗・積分の順序・区間反転公式
\[
\sum_{k=a}^{b}f\left(k\right)=\sum_{k=a}^{b}f\left(a+b-k\right)
\]
偶関数・奇関数の定積分
$f\left(x\right)$が偶関数ならば$\int_{-a}^{a}f\left(x\right)dx=2\int_{0}^{a}f\left(x\right)dx$
偶関数・奇関数の導関数
偶関数の導関数は奇関数になる。
偶関数・奇関数の和・積
\[
\text{奇関数}+\text{奇関数}=\text{奇関数}
\]
関数の偶奇分解
\[
f\left(x\right)=f_{e}\left(x\right)+f_{o}\left(x\right)
\]
偶関数・奇関数の定義
\[
f\left(-x\right)=\pm f\left(x\right)
\]
簡単に見えますが厳密に解くのは手間がかかります
\[
a=\frac{bx}{x-c},x=?
\]
分母に1次式がある方程式の厳密解
\[
\frac{a}{bx-c}=d\Leftrightarrow\begin{cases}
x=\frac{a+cd}{bd} & a\ne0\land b\ne0\land d\ne0\\
x\in\mathbb{R} & b=0\land c\ne0\land a+cd=0\\
x\in\mathbb{R}\setminus\left\{ \frac{c}{b}\right\} & a=0\land b\ne0\land d=0\\
x\in\emptyset & \left(a=0\land b\ne0\land d\ne0\right)\lor\left(b=0\land c=0\right)\lor\left(b=0\land c\ne0\land a+cd\ne0\right)\lor\left(a\ne0\land d=0\right)
\end{cases}
\]
答えを求めるだけなら簡単
\[
\sqrt{x^{2}-9}=x-2,x=?
\]
根号の中に根号がある整数問題
\[
\sqrt{n+\sqrt{n+7}}\in\mathbb{N},n=?
\]
2乗同士の差が素数のときその差はいくつになる?
$m^{2}-n^{2}$が素数のとき、$m-n$は?