順序写像かつ単射の性質
\[
\forall a,b\in X,a\precneqq b\rightarrow f\left(a\right)\precneqq\left(b\right)
\]
上限定理・下限定理
実数では上に有界ならば上限が存在する。
デデキント切断の定義
\[
a\in A\land b\in B\rightarrow a\preceq b
\]
半順序集合・狭義半順序集合の辞書式順序
\[
\left(x_{1},y_{1}\right)\preceq\left(x_{2},y_{2}\right)\Leftrightarrow x_{1}\prec_{X}x_{2}\lor\left(x_{1}=x_{2}\land y_{1}\preceq_{Y}y_{2}\right)
\]
半順序関係と狭義半順序関係
\[
x\prec y\Leftrightarrow x\preceq y\land x\ne y
\]
上方集合と下方集合の定義
\[
\forall x\in A,\forall y\in X,x\preceq y\rightarrow y\in A
\]
部分順序集合
\[
b_{1}\preceq_{A}b_{2}\Leftrightarrow b_{1}\preceq_{B}b_{2}
\]
2つの集合上の二項関係(一意性・全域性)の定義
\[
aRc\land bRc\Rightarrow a=b
\]
順序写像・順序単射・順序埋め込み写像の合成写像
順序写像同士の合成写像は順序写像になる。
狭義半順序関係の性質
2...
順序同型は同値関係
順序同型は同値関係(反射律・対称律・推移律)を満たす。
順序写像・単調写像・順序反映・順序埋め込み・順序同型写像の定義
\[
a\preceq_{X}b\Rightarrow f\left(a\right)\preceq_{Y}f\left(b\right)
\]
上界(下界)・上限(下限)・最大元(最小元)・極大元(極小元)の定義
\[
\min U=\sup A
\]
順序集合の双対順序集合と狭義順序集合の狭義逆順序
\[
\succeq:=\left\{ \left(a,b\right)\in X^{2};b\preceq a\right\}
\]
隣接関係の定義
\[
\forall x,y\in X,x\nsim x\land\left(x\sim y\rightarrow y\sim x\right)
\]
自明な同値関係と相等関係
\[
\forall x,y\in X,x\sim y
\]
2項関係の性質
\[
a=b\Rightarrow aRb\land bRa
\]
集合の色々な2項関係(反射律・非反射律・余反射律・対称律・反対称律・非対称律・推移律・完全律・3分律・ユークリッド律・連続律・集合律・整礎律・外延律の定義)の定義
\[
\forall a\in X,a
\]
2項関係の定義
\[
\left(a,b\right)\in R\Leftrightarrow aRb
\]