ブラーマグプタの公式
\[
S=\sqrt{\left(s-a\right)\left(s-b\right)\left(s-c\right)\left(s-d\right)}
\]
4角形が円に外接するときの対辺の和
\[
\left|\overrightarrow{AB}\right|+\left|\overrightarrow{CD}\right|=\left|\overrightarrow{BC}\right|+\left|\overrightarrow{DA}\right|
\]
ブレートシュナイダーの公式
\[
S=\sqrt{\left(s-a\right)\left(s-b\right)\left(s-c\right)\left(s-d\right)-abcd\cos^{2}\frac{A+C}{2}}
\]
4角形の対角線と面積の関係
\[
S=\frac{1}{2}\left(\overrightarrow{AC}\times\overrightarrow{DB}\right)
\]
トレミーの定理
\[
\left|\overrightarrow{AB}\right|\left|\overrightarrow{CD}\right|+\left|\overrightarrow{BC}\right|\left|\overrightarrow{DA}\right|=\left|\overrightarrow{BD}\right|\left|\overrightarrow{CA}\right|
\]
オイラーの定理
\[
p^{2}q^{2}=a^{2}c^{2}+b^{2}d^{2}-2abcd\cos\left(A+C\right)
\]
4角形の対辺同士の内積
\[
\overrightarrow{AB}\cdot\overrightarrow{CD}=\frac{1}{2}\left(b^{2}+d^{2}-p^{2}-q^{2}\right)
\]
3角関数・双曲線関数の無限乗積展開
\[
\sin\left(\pi z\right)=\pi z\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)
\]
リーマン・ゼータ関数(フルヴィッツ・ゼータ関数)のローラン展開時のスティルチェス定数(一般化スティルチェス定数)
\[
\gamma_{k}=\lim_{n\rightarrow\infty}\left(\left(\sum_{j=1}^{n}\frac{\log^{k}j}{j}\right)-\frac{\log^{k+1}n}{k+1}\right)
\]
リーマン・ゼータ関数のローラン展開
\[
\zeta\left(s\right)=\frac{1}{s-1}-\frac{1}{2}-s\int_{1}^{n}\frac{t-\left\lfloor t\right\rfloor -\frac{1}{2}}{t^{s+1}}dt
\]
アーベルの級数変形法とアーベルの総和公式
\[
\sum_{k=\left\lceil x\right\rceil }^{\left\lfloor y\right\rfloor }a_{k}b\left(k\right)=A\left(y\right)b\left(y\right)-\int_{x}^{y}A\left(t\right)b'\left(t\right)dt
\]
海賊の山分け
海賊が平等にコイン山分けをするにはどうすればいい?
3角関数の関数の定積分
\[
\int_{0}^{\frac{\pi}{2}}f\left(\cos x\right)dx=\int_{0}^{\frac{\pi}{2}}f\left(\sin x\right)dx
\]
有理数全体の集合
\[
f\left(x\right)=\frac{1}{\left\lfloor x\right\rfloor +1-\left\{ x\right\} }
\]
イータ関数の導関数がでてきます
\[
\int_{0}^{\infty}\frac{\log x}{1+e^{x}}dx=?
\]
T1空間と同値な条件
T1空間と単集合が閉集合は同値となる。
(*)分離公理(距離・正規・正則・T2・T1・T0・その他)同士の関係
\[
\text{距離空間}\Rightarrow\text{正規空間}\Rightarrow\text{正則空間}\Rightarrow T_{2}\text{空間}\Rightarrow T_{1}\text{空間}\Rightarrow T_{0}\text{空間}
\]