連結・非連結の別定義
非連結であることと、空集合・全体集合以外で開集合かつ閉集合となる集合が存在することは同値。
連結と非連結の定義
\[
\exists O_{1},O_{2}\in\mathcal{O},X=O_{1}\cup O_{2}\land O_{1}\cap O_{2}=\emptyset\land O_{1}\ne\emptyset\land O_{2}\ne\emptyset
\]
ライプニッツ級数
\[
\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k-1}}{2k-1}=\frac{\pi}{4}
\]
病気の感染と陽性問題
陽性と判定を受けた人が実際に感染している確率はいくらでしょうか?
3色のカメレオン問題
全てのカメレオンの色が同じになることはある?
シュレーディンガーの猫問題
箱の中に隠れていて夜の間に移動する猫は何日で探すことができる?
数列が全てで割り切れる素数
\[
a_{n}=19^{n}+\left(-1\right)^{n-1}2^{4n-3},n\in\mathbb{N}
\]
引き分けがある場合の勝率・敗率
\[
P_{A}=\frac{p_{A}}{p_{A}+p_{B}}
\]
上限位相空間・下限位相空間の第1可算公理・第2可算公理
上限位相空間・下限位相空間は第1可算公理を満たすが第2可算公理は満たさない。
上限位相・下限位相は通常位相より強い
\[
\mathcal{O}\subseteq\mathcal{O}_{u}
\]
上限位相と下限位相の定義
\[
\mathcal{B}_{u}=\left\{ \left(a,b\right];a,b\in\mathbb{R},a<b\right\}
\]
位相空間での点列と収束・極限点の定義
\[
\forall U_{x}\in\mathcal{U}_{x},\exists N\in\mathbb{N},N\leq n\rightarrow x_{n}\in U_{x}
\]
集合が同じで位相が異なる空間
$\left(X,\mathcal{O}_{1}\right),\left(X,\mathcal{O}_{2}\right)$が位相空間ならば$\left(X,\mathcal{O}_{1}\cap\mathcal{O}_{2}\right)$も位相空間になる。
ハウスドルフ空間とT1空間の点列の極限点
ハウスドルフ空間ならば、点列の極限点が存在すれば一意的に決まる。