クロネッカーのデルタ 2024年5月26日 クロネッカーのデルタの微分表示 \[ \delta_{j,k}=\frac{1}{k!}\left[\frac{\partial^{j}}{\partial x^{j}}x^{k}\right]_{x\rightarrow0} \]
2項係数 2024年5月24日 飛び飛びの2項定理 \[ \sum_{k=0}^{\infty}C\left(n,2k\right)a^{2k}b^{n-2k}=\frac{1}{2}\left\{ \left(a+b\right)^{n}+\left(-a+b\right)^{n}\right\} \]
スターリング数 2024年5月20日 (*)スターリング数と2項係数 \[ C\left(k,m\right)S_{1}\left(n,k\right)=\sum_{j=k-m}^{n-m}C\left(n,j\right)S_{1}\left(n-j,m\right)S_{1}\left(j,k-m\right),m\leq k \]
スターリング数 2024年5月20日 スターリング数の母関数 \[ \sum_{n=0}^{\infty}S_{1}\left(n,k\right)\frac{x^{n}}{n!}=\frac{\log^{k}\left(1+x\right)}{k!} \]
スターリング数 2024年5月17日 スターリング数の解釈 \[ \left(-1\right)^{n+k}S_{1}\left(n,k\right)=\sum_{1\leq a_{1}<a_{2}<\cdots<a_{n-k}\leq n-1}\prod_{j=1}^{n-k}a_{j} \]
スターリング数 2024年5月15日 スターリング数とベルヌーイ数の関係 \[ \frac{\left(-1\right)^{m}}{m!}\sum_{k=0}^{m}\left(-1\right)^{k}S_{1}\left(m+1,k+1\right)B_{k}=\frac{1}{m+1} \]
スターリング数 2024年5月14日 第1種・第2種スターリング数の性質 \[ \sum_{k=0}^{n}\left(-1\right)^{n+k}S_{1}\left(n,k\right)=n! \]
スターリング数 2024年5月13日 スターリング数と上昇・下降階乗 \[ Q\left(x,n\right)=\sum_{k=0}^{n}\left(-1\right)^{n+k}S_{1}\left(n,k\right)x^{k} \]
スターリング数 2024年5月12日 スターリング数の逆行列 \[ \delta_{nj}=\sum_{k=0}^{n}S_{1}\left(n,k\right)S_{2}\left(k,j\right) \]
スターリング数 2024年5月10日 第2種スターリング数の一般解 \[ S_{2}\left(n,k\right)=\frac{1}{k!}\sum_{j=0}^{k}\left(-1\right)^{k-j}C\left(k,j\right)j^{n} \]
スターリング数 2024年5月8日 (*)スターリング数の漸化式 \[ S_{1}\left(n,k\right)=S_{1}\left(n-1,k-1\right)-\left(n-1\right)S_{1}\left(n-1,k\right) \]
スターリング数 2024年5月7日 第1種スターリング数の符号 \[ \left|S_{1}\left(n,k\right)\right|=\left(-1\right)^{n+k}S_{1}\left(n,k\right) \]
スターリング数 2024年5月6日 第1種スターリング数と第2種スターリング数の定義 \[ P\left(x,n\right)=\sum_{k=0}^{n}S_{1}\left(n,k\right)x^{k} \]
距離空間 2024年4月30日 距離空間での集積点と閉包の点列による別定義 \[ x\in A^{d}\leftrightarrow\exists\left(x_{n}\right)_{n=1}^{\infty}\subseteq A\setminus\left\{ x\right\} ,\lim_{n\rightarrow\infty}x_{n}=x \]
距離空間 2024年4月29日 距離空間での内点(内部)・外点(外部)・境界(境界点)・触点(閉包)・集積点(導集合)・孤立点の定義 \[ \exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A \]
極限問題 2024年4月24日 階乗を和に直しましょう \[ \lim_{n\rightarrow\infty}\frac{1}{n}\sqrt[n]{\frac{\left(3n\right)!}{\left(2n\right)!}}=? \]
交換子・反交換子 2024年4月23日 ベーカー・キャンベル・ハウスドルフの公式(BCH公式) \[ e^{A}e^{B}=\exp\left(A+B+\frac{1}{2}\left[A,B\right]+\frac{1}{12}\left[A-B,\left[A,B\right]\right]+\cdots\right) \]
交換子・反交換子 2024年4月21日 反交換子を含む基本的性質(反交換関係) \[ \left[AB,C\right]=A\left\{ B,C\right\} -\left\{ A,C\right\} B \]