気付けば一瞬で解ける問題
気付けば一瞬で解ける問題
\(x+\sqrt{x}=3\)のとき、\(x+\frac{3}{\sqrt{x}}\)を求めよ。
\(x+\sqrt{x}=3\)のとき、\(x+\frac{3}{\sqrt{x}}\)を求めよ。
\begin{align*}
x+\frac{3}{\sqrt{x}} & =x+\frac{x+\sqrt{x}}{\sqrt{x}}\\
& =x+\sqrt{x}+1\\
& =3+1\\
& =4
\end{align*}
ページ情報
タイトル | 気付けば一瞬で解ける問題 |
URL | https://www.nomuramath.com/paunmuhi/ |
SNSボタン |
y/xを求める問題
$\frac{1}{x}+\frac{1}{y}=\frac{1}{x-y}\;,\;0<x<y$のとき、$\frac{y}{x}$を求めよ
aのa乗にして解く問題
\[
27^{x}x=1,x=?
\]
sinとcosの5乗が1になる方程式
\[
\sin^{5}x+\cos^{5}x=1,x=?
\]
3次方程式を解けるかな
\[
z^{3}+z^{2}=36
\]