フルヴィッツ・ゼータ関数の積分表現
フルヴィッツ・ゼータ関数の積分表現
\[ \zeta\left(s,\alpha\right)=\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt \]
\(\Gamma\left(s\right)\)はガンマ関数
\[ \zeta\left(s,\alpha\right)=\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt \]
-
\(\zeta\left(\alpha,\beta\right)\)はフルヴィッツ・ゼータ関数\(\Gamma\left(s\right)\)はガンマ関数
\begin{align*}
\zeta\left(s,\alpha\right) & =\sum_{k=0}^{\infty}\frac{1}{\left(\alpha+k\right)^{s}}\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\frac{\Gamma\left(s\right)}{\left(\alpha+k\right)^{s}}\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\frac{\Gamma\left(s\right)}{\left(\alpha+k\right)^{s}}\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\mathcal{L}_{t}\left[H\left(t\right)t^{s-1}\right]\left(\alpha+k\right)\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\int_{-\infty}^{\infty}H\left(t\right)t^{s-1}e^{-\left(\alpha+k\right)t}dt\\
& =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}e^{-\alpha t}\sum_{k=0}^{\infty}e^{-kt}dt\\
& =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}e^{-\alpha t}\frac{1}{1-e^{-t}}dt\\
& =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt
\end{align*}
ページ情報
タイトル | フルヴィッツ・ゼータ関数の積分表現 |
URL | https://www.nomuramath.com/pdkgbgzp/ |
SNSボタン |
リーマン・ゼータ関数とディレクレ・イータ関数の導関数の特殊値
\[
\zeta'\left(0\right)=-\Log\sqrt{2\pi}
\]
リーマン・ゼータ関数を含む総和
\[
\sum_{k=2}^{\infty}\frac{\zeta\left(k\right)-1}{k}=1-\gamma
\]
ゼータ関数の交代級数
\[
\sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2}
\]
リーマン・ゼータ関数(フルヴィッツ・ゼータ関数)のローラン展開時のスティルチェス定数(一般化スティルチェス定数)
\[
\gamma_{k}=\lim_{n\rightarrow\infty}\left(\left(\sum_{j=1}^{n}\frac{\log^{k}j}{j}\right)-\frac{\log^{k+1}n}{k+1}\right)
\]