ウォリス積分の定義
\(n\in\mathbb{N}_{0}\)とする。
以下の積分をウォリス積分という。
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta \]
以下の積分をウォリス積分という。
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta \]
ページ情報
タイトル | ウォリス積分の定義 |
URL | https://www.nomuramath.com/pf2syylr/ |
SNSボタン |
一般化調和数の通常型母関数と調和数の指数型母関数
\[
\sum_{k=1}^{\infty}H_{k,m}z^{k}=\frac{\Li_{m}(z)}{1-z}
\]
積分問題
\[
\int_{0}^{\infty}\frac{x^{s}}{\cosh^{2}x}dx=\frac{\Gamma(s+1)}{2^{s-1}}\eta(s)
\]
対数の基本公式
\[
\log M+\log N=\log MN
\]
(*)log(1-x)のn乗の展開
\[
\log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n}
\]