デデキント切断の定義
デデキント切断の定義
全順序集合\(\left(X,\preceq\right)\)を次の条件を満たす集合\(A,B\)に分ける。
全順序集合\(\left(X,\preceq\right)\)を次の条件を満たす集合\(A,B\)に分ける。
(a)
\[ X=A\cup B \](b)
\[ A\cap B=\emptyset\land A\ne\emptyset\land B\ne\emptyset \](c)
\[ a\in A\land b\in B\rightarrow a\preceq b \] このとき、組\(\left(A,B\right)\)をデデキント切断という。デデキント切断\(\left(A,B\right)\)は\(A\)に最大元のあるかないかで2通り、\(B\)に最小元があるかないかで2通りの合計4通りに分けられる。
(1)
\(A\)に最大元、\(B\)に最小元がある。(2)
\(A\)には最大元があるが、\(B\)には最小元がない。(3)
\(A\)には最大元がないが、\(B\)には最小元がある。(4)
\(A\)に最大元がなく、\(B\)にも最小元がない。ページ情報
タイトル | デデキント切断の定義 |
URL | https://www.nomuramath.com/prq8jifu/ |
SNSボタン |
順序を反映する写像(順序単射)ならば単射
半順序集合・狭義半順序集合の辞書式順序
\[
\left(x_{1},y_{1}\right)\preceq\left(x_{2},y_{2}\right)\Leftrightarrow x_{1}\prec_{X}x_{2}\lor\left(x_{1}=x_{2}\land y_{1}\preceq_{Y}y_{2}\right)
\]
整列集合の比較定理
順序集合の双対順序集合と狭義順序集合の狭義逆順序
\[
\succeq:=\left\{ \left(a,b\right)\in X^{2};b\preceq a\right\}
\]