無限集合は可算無限部分集合をもつ
無限集合は可算無限部分集合をもつ
無限集合は可算無限部分集合をもつ。
ただし選択公理を認めるとする。
無限集合は可算無限部分集合をもつ。
ただし選択公理を認めるとする。
無限集合を\(A\)とする。
このとき選択公理より\(a_{n}\)を\(a_{n}\in A\setminus\bigcup_{k=1}^{n-1}\left\{ a_{k}\right\} \)と選ぶと、\(\left\{ a_{1},a_{2},\cdots\right\} =\left\{ a_{n}\right\} _{n\in\mathbb{N}}\subseteq A\)は可算無限部分集合となる。
故に題意は成り立つ。
このとき選択公理より\(a_{n}\)を\(a_{n}\in A\setminus\bigcup_{k=1}^{n-1}\left\{ a_{k}\right\} \)と選ぶと、\(\left\{ a_{1},a_{2},\cdots\right\} =\left\{ a_{n}\right\} _{n\in\mathbb{N}}\subseteq A\)は可算無限部分集合となる。
故に題意は成り立つ。
ページ情報
タイトル | 無限集合は可算無限部分集合をもつ |
URL | https://www.nomuramath.com/pyftcwbu/ |
SNSボタン |
複素数の実部と虚部
\[
\Re\left(-z\right)=-\Re\left(z\right)
\]
チェビシェフ多項式の級数表示
\[
T_{n}(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2}\right\rfloor }\left(C(n,2k)\left(-1\right)^{k}\left(1-x^{2}\right)^{k}x^{n-2k}\right)
\]
集合の色々な2項関係(反射律・非反射律・余反射律・対称律・反対称律・非対称律・推移律・完全律・3分律・ユークリッド律・連続律・集合律・整礎律・外延律の定義)の定義
\[
\forall a\in X,a
\]
ディリクレ核の性質
\[
\lim_{n\rightarrow\infty}D_{n}\left(x\right)=2\pi\mathrm{comb}_{2\pi}\left(x\right)
\]