無限集合は可算無限部分集合をもつ
無限集合は可算無限部分集合をもつ
無限集合は可算無限部分集合をもつ。
ただし選択公理を認めるとする。
無限集合は可算無限部分集合をもつ。
ただし選択公理を認めるとする。
無限集合を\(A\)とする。
このとき選択公理より\(a_{n}\)を\(a_{n}\in A\setminus\bigcup_{k=1}^{n-1}\left\{ a_{k}\right\} \)と選ぶと、\(\left\{ a_{1},a_{2},\cdots\right\} =\left\{ a_{n}\right\} _{n\in\mathbb{N}}\subseteq A\)は可算無限部分集合となる。
故に題意は成り立つ。
このとき選択公理より\(a_{n}\)を\(a_{n}\in A\setminus\bigcup_{k=1}^{n-1}\left\{ a_{k}\right\} \)と選ぶと、\(\left\{ a_{1},a_{2},\cdots\right\} =\left\{ a_{n}\right\} _{n\in\mathbb{N}}\subseteq A\)は可算無限部分集合となる。
故に題意は成り立つ。
ページ情報
タイトル | 無限集合は可算無限部分集合をもつ |
URL | https://www.nomuramath.com/pyftcwbu/ |
SNSボタン |
偶関数の分母に指数関数+1がある対称な定積分
\[
\int_{-c}^{c}\frac{f_{e}\left(x\right)}{1+a^{x}}dx=\int_{0}^{c}f_{e}\left(x\right)dx
\]
1±itan(z)など
\[
1\pm i\tan z=\frac{1}{\cos\left(2\Re z\right)+\cosh\left(2\Im z\right)}\left(e^{\pm2i\Re z}+e^{\mp2\Im z}\right)
\]
三角関数・双曲線関数の一次結合の逆数の積分
\[
\int\frac{1}{\alpha\sin z+\beta\cos z+\gamma}dz=-\frac{2}{\sqrt{\alpha^{2}+\beta^{2}-\gamma^{2}}}\tanh^{\bullet}\frac{\left(\gamma-\beta\right)\tan\frac{z}{2}+\alpha}{\sqrt{\alpha^{2}+\beta^{2}-\gamma^{2}}}+C
\]
調和数・一般化調和数の乗法公式
\[
H_{nz,m}=\frac{n^{m-1}-1}{n^{m-1}}\zeta\left(m\right)+\frac{1}{n^{m}}\sum_{k=0}^{n-1}H_{z+\frac{k}{n},m}
\]