無限集合は可算無限部分集合をもつ
無限集合は可算無限部分集合をもつ
無限集合は可算無限部分集合をもつ。
ただし選択公理を認めるとする。
無限集合は可算無限部分集合をもつ。
ただし選択公理を認めるとする。
無限集合を\(A\)とする。
このとき選択公理より\(a_{n}\)を\(a_{n}\in A\setminus\bigcup_{k=1}^{n-1}\left\{ a_{k}\right\} \)と選ぶと、\(\left\{ a_{1},a_{2},\cdots\right\} =\left\{ a_{n}\right\} _{n\in\mathbb{N}}\subseteq A\)は可算無限部分集合となる。
故に題意は成り立つ。
このとき選択公理より\(a_{n}\)を\(a_{n}\in A\setminus\bigcup_{k=1}^{n-1}\left\{ a_{k}\right\} \)と選ぶと、\(\left\{ a_{1},a_{2},\cdots\right\} =\left\{ a_{n}\right\} _{n\in\mathbb{N}}\subseteq A\)は可算無限部分集合となる。
故に題意は成り立つ。
ページ情報
タイトル | 無限集合は可算無限部分集合をもつ |
URL | https://www.nomuramath.com/pyftcwbu/ |
SNSボタン |
[javascript]テキストエリアのカーソル位置に挿入・選択範囲をタグで囲う
偶関数の分母に指数関数+1がある対称な定積分
\[
\int_{-c}^{c}\frac{f_{e}\left(x\right)}{1+a^{x}}dx=\int_{0}^{c}f_{e}\left(x\right)dx
\]
コーシーの関数方程式と関数方程式の基本
\[
f(x+y)=f(x)+f(y)
\]
すべての自然数の積(解析接続あり)
\[
\prod_{k=1}^{\infty}k=\sqrt{2\pi}
\]