終域が2つの写像全体の集合
終域が2つの写像全体の集合
集合\(X\)に対し、\(X\)から\(\left\{ 0,1\right\} \)への写像全体の集合を\(\left\{ 0,1\right\} ^{X}\)で表す。
このとき任意の集合\(X\)に対して\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
集合\(X\)に対し、\(X\)から\(\left\{ 0,1\right\} \)への写像全体の集合を\(\left\{ 0,1\right\} ^{X}\)で表す。
このとき任意の集合\(X\)に対して\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
任意の\(A\in2^{X}\)に対し写像を指示関数
\[ 1_{A}:X\rightarrow\left\{ 0,1\right\} ,x\mapsto\begin{cases} 1 & x\in A\\ 0 & x\notin A \end{cases} \] で定める。
このとき写像
\[ f:2^{X}\rightarrow\left\{ 0,1\right\} ^{X},A\mapsto1_{A} \] は全単射になるので、\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
\[ 1_{A}:X\rightarrow\left\{ 0,1\right\} ,x\mapsto\begin{cases} 1 & x\in A\\ 0 & x\notin A \end{cases} \] で定める。
このとき写像
\[ f:2^{X}\rightarrow\left\{ 0,1\right\} ^{X},A\mapsto1_{A} \] は全単射になるので、\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
ページ情報
タイトル | 終域が2つの写像全体の集合 |
URL | https://www.nomuramath.com/q1zfp3zc/ |
SNSボタン |
『2元1次不定方程式の整数解とユークリッドの互除法』を更新しました。
余弦積分の極限
\[
\lim_{x\rightarrow\pm0}\left\{ \Ci\left(\alpha x\right)-\Ci\left(x\right)\right\} =\begin{cases}
\Log\alpha & x\rightarrow+0\\
\Log\left(-\alpha\right)-\pi i & x\rightarrow-0
\end{cases}
\]
偶数と奇数の2重階乗
\[
\left(2n+1\right)!!=2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)}
\]
第1種・第2種不完全ガンマ関数の漸化式
\[
\Gamma\left(a+1,x\right)=a\Gamma\left(a,x\right)+x^{a}e^{-x}
\]