終域が2つの写像全体の集合
終域が2つの写像全体の集合
集合\(X\)に対し、\(X\)から\(\left\{ 0,1\right\} \)への写像全体の集合を\(\left\{ 0,1\right\} ^{X}\)で表す。
このとき任意の集合\(X\)に対して\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
集合\(X\)に対し、\(X\)から\(\left\{ 0,1\right\} \)への写像全体の集合を\(\left\{ 0,1\right\} ^{X}\)で表す。
このとき任意の集合\(X\)に対して\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
任意の\(A\in2^{X}\)に対し写像を指示関数
\[ 1_{A}:X\rightarrow\left\{ 0,1\right\} ,x\mapsto\begin{cases} 1 & x\in A\\ 0 & x\notin A \end{cases} \] で定める。
このとき写像
\[ f:2^{X}\rightarrow\left\{ 0,1\right\} ^{X},A\mapsto1_{A} \] は全単射になるので、\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
\[ 1_{A}:X\rightarrow\left\{ 0,1\right\} ,x\mapsto\begin{cases} 1 & x\in A\\ 0 & x\notin A \end{cases} \] で定める。
このとき写像
\[ f:2^{X}\rightarrow\left\{ 0,1\right\} ^{X},A\mapsto1_{A} \] は全単射になるので、\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
ページ情報
タイトル | 終域が2つの写像全体の集合 |
URL | https://www.nomuramath.com/q1zfp3zc/ |
SNSボタン |
剰余演算の定数倍
\[
\frac{1}{\delta}\mod\left(\alpha,\beta,\gamma\right)=\mod\left(\frac{\alpha}{\delta},\frac{\beta}{\delta},\frac{\gamma}{\delta}\right)
\]
ハイパー演算子とクヌースの矢印表記の(2,2)の値
\[
2\uparrow^{n}2=4-\delta_{-2,n}
\]
第1種スターリング数の符号
\[
\left|S_{1}\left(n,k\right)\right|=\left(-1\right)^{n+k}S_{1}\left(n,k\right)
\]
クヌースの矢印表記の定義
\[
a\uparrow^{n}b:=\begin{cases}
ab & n=0\\
1 & n\geq1\;\land\;b=0\\
\underbrace{a\uparrow^{n-1}a\uparrow^{n-1}\cdots\uparrow^{n-1}a}_{b\;copies\;of\;a} & otherwise
\end{cases}
\]