終域が2つの写像全体の集合
終域が2つの写像全体の集合
集合\(X\)に対し、\(X\)から\(\left\{ 0,1\right\} \)への写像全体の集合を\(\left\{ 0,1\right\} ^{X}\)で表す。
このとき任意の集合\(X\)に対して\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
集合\(X\)に対し、\(X\)から\(\left\{ 0,1\right\} \)への写像全体の集合を\(\left\{ 0,1\right\} ^{X}\)で表す。
このとき任意の集合\(X\)に対して\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
任意の\(A\in2^{X}\)に対し写像を指示関数
\[ 1_{A}:X\rightarrow\left\{ 0,1\right\} ,x\mapsto\begin{cases} 1 & x\in A\\ 0 & x\notin A \end{cases} \] で定める。
このとき写像
\[ f:2^{X}\rightarrow\left\{ 0,1\right\} ^{X},A\mapsto1_{A} \] は全単射になるので、\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
\[ 1_{A}:X\rightarrow\left\{ 0,1\right\} ,x\mapsto\begin{cases} 1 & x\in A\\ 0 & x\notin A \end{cases} \] で定める。
このとき写像
\[ f:2^{X}\rightarrow\left\{ 0,1\right\} ^{X},A\mapsto1_{A} \] は全単射になるので、\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
ページ情報
タイトル | 終域が2つの写像全体の集合 |
URL | https://www.nomuramath.com/q1zfp3zc/ |
SNSボタン |
早期権利行使は損
早期権利行使はせずにその権利を売るほうが得をする。
ワイエルシュトラスのM判定法(優級数判定法)
偏角の和と積の偏角
\[
\Arg\left(\alpha\right)+\Arg\left(\beta\right)=?\Arg\left(\alpha\beta\right)
\]
点と集合との距離と集合同士の距離の定義
\[
d\left(A,B\right):=\inf\left\{ d\left(a,b\right);a\in A,b\in B\right\}
\]