総和と総乗の逆順
総和と総乗の逆順
(1)
\[ \sum_{k=a}^{b}f\left(k\right)=\sum_{k=-b}^{-a}f\left(-k\right) \](2)
\[ \prod_{k=a}^{b}f\left(k\right)=\prod_{k=-b}^{-a}f\left(-k\right) \](1)
\begin{align*} \sum_{k=a}^{b}f\left(k\right) & =f\left(a\right)+f\left(a+1\right)+\cdots+f\left(b\right)\\ & =f\left(b\right)+f\left(b+1\right)+\cdots+f\left(a\right)\\ & =f\left(-\left(-b\right)\right)+f\left(-\left(-b-1\right)\right)+\cdots+f\left(-\left(-a\right)\right)\\ & =\sum_{k=-b}^{-a}f\left(-k\right) \end{align*}(2)
\begin{align*} \prod_{k=a}^{b}f\left(k\right) & =\prod_{k=a}^{b}\exp\left(\Log\left(f\left(k\right)\right)\right)\\ & =\exp\left(\sum_{k=a}^{b}\Log\left(f\left(k\right)\right)\right)\\ & =\exp\left(\sum_{k=-b}^{-a}\Log\left(f\left(-k\right)\right)\right)\\ & =\sum_{k=-b}^{a}\exp\left(\Log\left(f\left(-k\right)\right)\right)\\ & =\prod_{k=-b}^{-a}f\left(-k\right) \end{align*}ページ情報
タイトル | 総和と総乗の逆順 |
URL | https://www.nomuramath.com/q9pccacy/ |
SNSボタン |
1のn乗根のべき乗の総和
\[
\sum_{k=0}^{n-1}\left(\omega_{n}^{\;k}\right)^{m}=n\delta_{0,\mod\left(m,n\right)}
\]
1-1+1-1+…と続く総和
\[
\sum_{k=1}^{n}\left(-1\right)^{k+1}=\frac{1}{2}+\frac{\left(-1\right)^{n+1}}{2}
\]
アーベルの級数変形法とアーベルの総和公式
\[
\sum_{k=\left\lceil x\right\rceil }^{\left\lfloor y\right\rfloor }a_{k}b\left(k\right)=A\left(y\right)b\left(y\right)-\int_{x}^{y}A\left(t\right)b'\left(t\right)dt
\]
ラマヌジャンの無限根
\[
1\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+\cdots}}}}=3
\]