階乗・ガンマ関数の商と階乗冪(上昇階乗・下降階乗)の関係
階乗・ガンマ関数の商と階乗冪(上昇階乗・下降階乗)の関係
(1)
\begin{align*} \frac{x!}{y!} & =P\left(x,x-y\right)\\ & =P^{-1}\left(y,y-x\right)\\ & =Q\left(y+1,x-y\right)\\ & =Q^{-1}\left(x+1,y-x\right) \end{align*}(2)
\begin{align*} \frac{\Gamma\left(x\right)}{\Gamma\left(y\right)} & =P\left(x-1,x-y\right)\\ & =P^{-1}\left(y-1,y-x\right)\\ & =Q\left(y,x-y\right)\\ & =Q^{-1}\left(x,y-x\right) \end{align*}(1)
\begin{align*} \frac{x!}{y!} & =\frac{x!}{\left(x-\left(x-y\right)\right)!}\\ & =P\left(x,x-y\right) \end{align*} \begin{align*} \frac{x!}{y!} & =\frac{\left(y-\left(y-x\right)\right)!}{y!}\\ & =P^{-1}\left(y,y-x\right) \end{align*} \begin{align*} \frac{x!}{y!} & =\frac{\Gamma\left(x+1\right)}{\Gamma\left(y+1\right)}\\ & =\frac{\Gamma\left(y+1+\left(x-y\right)\right)}{\Gamma\left(y+1\right)}\\ & =Q\left(y+1,x-y\right) \end{align*} \begin{align*} \frac{x!}{y!} & =\frac{\Gamma\left(x+1\right)}{\Gamma\left(y+1\right)}\\ & =\frac{\Gamma\left(x+1\right)}{\Gamma\left(x+1+\left(y-x\right)\right)}\\ & =Q^{-1}\left(x+1,y-x\right) \end{align*}(2)
(1)より、\begin{align*} \frac{\Gamma\left(x\right)}{\Gamma\left(y\right)} & =\frac{\left(x-1\right)!}{\left(y-1\right)!}\\ & =P\left(x-1,x-y\right)\\ & =P^{-1}\left(y-1,y-x\right)\\ & =Q\left(y,x-y\right)\\ & =Q^{-1}\left(x,y-x\right) \end{align*}
ページ情報
タイトル | 階乗・ガンマ関数の商と階乗冪(上昇階乗・下降階乗)の関係 |
URL | https://www.nomuramath.com/qe729eua/ |
SNSボタン |
階乗冪(上昇階乗・下降階乗)の定義
\[
P(x,y)=\frac{x!}{(x-y)!}
\]
階乗冪(下降階乗・上昇階乗)の1/2値
\[
P\left(-\frac{1}{2},n\right)=\frac{(-1)^{n}(2n-1)!}{2^{2n-1}(n-1)!}
\]
階乗冪(下降階乗・上昇階乗)の和分
\[
\sum_{k=1}^{m}P(k,n)=\frac{1}{n+1}P(m+1,n+1)
\]
階乗冪(下降階乗・上昇階乗)の微分
\[
\frac{d}{dx}P(x,y) =P(x,y)\left\{ \psi(1+x)-\psi(1+x-y)\right\}
\]