距離空間での有界列の定義
距離空間での有界列の定義
距離空間\(\left(X,d\right)\)で点列\(\left(x_{n}\right)_{n\in\mathbb{N}}\)が与えられたとき、ある\(M>0\)とある\(a\in X\)があり、任意の\(n\in\mathbb{N}\)で\(d\left(x_{n},a\right)\leq M\)が成り立つとき、\(\left(x_{n}\right)_{n\in\mathbb{N}}\)は有界列という。
すなわち、部分集合\(\left\{ x_{n};n\in\mathbb{N}\right\} \)が有界なことである。
距離空間\(\left(X,d\right)\)で点列\(\left(x_{n}\right)_{n\in\mathbb{N}}\)が与えられたとき、ある\(M>0\)とある\(a\in X\)があり、任意の\(n\in\mathbb{N}\)で\(d\left(x_{n},a\right)\leq M\)が成り立つとき、\(\left(x_{n}\right)_{n\in\mathbb{N}}\)は有界列という。
すなわち、部分集合\(\left\{ x_{n};n\in\mathbb{N}\right\} \)が有界なことである。
通常距離で考える。
点列\(\left(\left(-1\right)^{n}\right)_{n\in\mathbb{N}}\)は任意の\(n\in\mathbb{N}\)で\(d\left(\left(-1\right)^{n},0\right)\leq1\)となるので有界列である。
点列\(\left(n\right)_{n\in\mathbb{N}}\)は任意の\(M>0\)、任意の\(a\in\mathbb{R}\)に対し、\(n=M+a+1\)ととれば\(d\left(n,a\right)>M\)となるので有界列ではない。
点列\(\left(\left(-1\right)^{n}\right)_{n\in\mathbb{N}}\)は任意の\(n\in\mathbb{N}\)で\(d\left(\left(-1\right)^{n},0\right)\leq1\)となるので有界列である。
点列\(\left(n\right)_{n\in\mathbb{N}}\)は任意の\(M>0\)、任意の\(a\in\mathbb{R}\)に対し、\(n=M+a+1\)ととれば\(d\left(n,a\right)>M\)となるので有界列ではない。
ページ情報
タイトル | 距離空間での有界列の定義 |
URL | https://www.nomuramath.com/qqq2acf4/ |
SNSボタン |
距離空間ならば正規空間
離散距離は距離空間
\[
d_{\delta}\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases}
0 & \boldsymbol{x}=\boldsymbol{y}\\
1 & \boldsymbol{x}\ne\boldsymbol{y}
\end{cases}
\]
2つの距離関数と点列・開集合・閉集合の関係
距離空間でε-近傍は開集合
\[
\forall U_{\epsilon}\left(a\right)\subseteq X,\forall a_{0}\in U_{\epsilon}\left(a\right),\exists\epsilon_{0}>0,U_{\epsilon_{0}}\left(a_{0}\right)\subseteq U_{\epsilon}\left(a\right)
\]