2項係数を含む総和
2項係数を含む総和
(1)
\[ \sum_{k=0}^{n}\frac{\left(-1\right)^{k}C\left(n,k\right)}{m+k}=\frac{1}{mC\left(m+n,m\right)} \](2)
\[ \sum_{k=0}^{n}\frac{\left(-1\right)^{k}C\left(n,k\right)}{m-k}=\frac{\left(-1\right)^{n}}{\left(m-n\right)C\left(m,n\right)} \](1)
\begin{align*} \sum_{k=0}^{n}\frac{\left(-1\right)^{k}C\left(n,k\right)}{m+k} & =\int_{0}^{1}\sum_{k=0}^{n}\left(-1\right)^{k}x^{m+k-1}C\left(n,k\right)dx\\ & =\left(-1\right)^{-n}\int_{0}^{1}x^{m-1}\sum_{k=0}^{n}\left(-1\right)^{n-k}x^{k}C\left(n,k\right)dx\\ & =\left(-1\right)^{-n}\int_{0}^{1}x^{m-1}\left(x-1\right)^{n}dx\\ & =\int_{0}^{1}x^{m-1}\left(1-x\right)^{n}dx\\ & =B\left(m,n+1\right)\\ & =\frac{\Gamma\left(m\right)\Gamma\left(n+1\right)}{\Gamma\left(m+n+1\right)}\\ & =\frac{\Gamma\left(m+1\right)\Gamma\left(n+1\right)}{m\Gamma\left(m+n+1\right)}\\ & =\frac{1}{mC\left(m+n,m\right)} \end{align*}(2)
\begin{align*} \sum_{k=0}^{n}\frac{\left(-1\right)^{k}C\left(n,k\right)}{m-k} & =\int_{0}^{1}\sum_{k=0}^{n}\left(-1\right)^{k}x^{m-k-1}C\left(n,k\right)dx\\ & =\int_{0}^{1}x^{m-n-1}\sum_{k=0}^{n}\left(-1\right)^{k}x^{n-k}C\left(n,k\right)dx\\ & =\int_{0}^{1}x^{m-n-1}\left(x-1\right)^{n}dx\\ & =\left(-1\right)^{n}\int_{0}^{1}x^{m-n-1}\left(1-x\right)^{n}dx\\ & =\left(-1\right)^{n}B\left(m-n,n+1\right)\\ & =\left(-1\right)^{n}\frac{\Gamma\left(m-n\right)\Gamma\left(n+1\right)}{\Gamma\left(m+1\right)}\\ & =\left(-1\right)^{n}\frac{\Gamma\left(m-n+1\right)\Gamma\left(n+1\right)}{\left(m-n\right)\Gamma\left(m+1\right)}\\ & =\frac{\left(-1\right)^{n}}{\left(m-n\right)C\left(m,n\right)} \end{align*}ページ情報
タイトル | 2項係数を含む総和 |
URL | https://www.nomuramath.com/qul675uc/ |
SNSボタン |
パスカルの法則
\[
C(x+1,y+1)=C(x,y+1)+C(x,y)
\]
負の整数の2項係数
\[
C\left(-m,-n\right)=\left(-1\right)^{m-n}C\left(n-1,m-1\right)
\]
2項係数の相加平均・相乗平均を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt[n]{\sqrt[n+1]{\prod_{k=0}^{n}C\left(n,k\right)}}=\sqrt{e}
\]
2項係数の1項間漸化式
\[
C(x+1,y)=\frac{x+1}{x+1-y}C(x,y)
\]